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Abstract

There is mounting evidence indicating that the synovial fibroblast is a direct effector of tissue
injury and matrix remodeling in inflammatory synovitis. Through the elaboration of effector
signals including cytokines and chemokines, mesenchymal cells stimulate or suppress
inflammation via autocrine and paracrine mechanisms. Synovial fibroblasts are the principal
cells mediating joint destruction through secretion of metalloproteinases, and recent evidence
suggests that they may also promote bone resorption by stimulating osteoclastogenesis.
Moreover, they may play an integral role in the initial phases of synovitis by releasing
chemokines that recruit leukocytes to the joint, and cytokines that trigger angiogenesis.
Studies focusing on synoviocyte–leukocyte interactions mediated via the cytokine network
and the role of cell–cell contact in driving synoviocyte activation will help define the complex
interplay that leads to the initiation and perpetuation of synovial inflammation.
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BMP = bone morphogenic protein; MCP = macrophage chemotactic protein; MIF = macrophage inhibitory factor; MIP = macrophage inflammatory
protein; MMP = metalloproteinase; RA = rheumatoid arthritis; RT-PCR = reverse transcriptase polymerase chain reaction; SCID = severe combined
immunodeficient; SF = synovial fibroblasts; TIMP = tissue inhibitors of metalloproteinases;TNF = tumor necrosis factor; VEGF = vascular endothe-
lial growth factor.
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Introduction
In rheumatoid arthritis, the normally delicate synovial mem-
brane is transformed into a proliferating invasive cell mass
or pannus that erodes the surrounding tissue and bone.
Infiltrating T lymphocytes, monocytes and synoviocytes of
monocyte (type A) and fibroblast (type B) lineage have
been implicated in orchestrating and maintaining synovitis,
although their relative contributions have been the subject
of considerable debate [1••,2,3]. Recent clinical trials with
anti-tumor necrosis factor therapies in rheumatoid arthritis
have demonstrated that these agents significantly improve
clinical measures and retard bone erosion [4–6]. This
focused attention on the pivotal role of the monocyte in

mediating the proximal events in inflammatory synovitis.
However, enthusiasm for this pathway must be tempered
by the observation that 25% of patients are resistant to
these therapies and that remissions are rare, suggesting
other mechanisms may also be important.

One of the most striking features of inflammatory arthritis
is the hyperplasia of synovial fibroblasts (SF) in the lining
layer [7•]. In serial culture, these fibroblasts exhibit several
novel properties including high proliferative rates, loss of
contact inhibition, constitutive expression of cytokine
mRNA and protein, and anchorage-independent cell
growth [8•,9•,10]. These observations challenged the
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traditional view of fibroblasts as target cells that mediate
tissue repair in response to signals provided by mono-
cytes and lymphocytes. The aggressive potential of these
cells was convincingly demonstrated when serially cul-
tured human SF invaded co-implanted human cartilage
engrafted into severe combined immunodeficient (SCID)
mice [11••]. Subsequent studies support these initial
observations. Sensitive molecular and immunologic tech-
niques have been applied to better understand the mecha-
nisms that lead to the altered phenotype of the fibroblasts.
As a result of these efforts, there is now abundant evi-
dence indicating that SF release effector molecules that
act on a variety of cells (lymphocytes, monocytes, mes-
enchymal cells) to modulate joint inflammation and
promote matrix degradation (Table 1).

Angiogenesis and induction of inflammation
New blood vessel formation or angiogenesis is a charac-
teristic feature of inflamed synovial membranes, and it is
now appreciated that the endothelial cell is an active par-
ticipant mediating both inflammatory and immunologic
interactions [12]. The role of pro-angiogenic cytokines in
arthritis is the subject of active investigation in many labo-
ratories, and treatment strategies using anti-angiogenic
molecules show promising results in animal models [12].
Several important pro-angiogenic cytokines and growth
factors are released by SF including transforming growth
factor-β, interleukin (IL)-8, platelet derived growth factor,
granulocyte-macrophage colony stimulating factor, epider-
mal growth factor, vascular endothelial growth factor
(VEGF) and fibroblast growth factor. VEGF, one of the
most potent angiogenic factors, is expressed constitutively
in SF, and secretion is augmented by IL-1 and hypoxia [13].
Further support for the inducibility of VEGF by cytokines
was demonstrated by suppression of VEGF in dissociated
synovial membrane cultures after combined neutralization of
IL-1 and tumor necrosis factor (TNF)-α [14].

Synovial fibroblasts have the potential to induce synovitis
by releasing mediators that attract leukocytes into the
joint. This underscores the concept that resident mes-
enchymal cells can act as effector cells during the early
stages of synovitis [15]. Following cytokine stimulation
and/or engagement of the CD40 receptor, SF release
chemoattractant molecules including the chemokines
macrophage chemotactic protein (MCP)-1 and macro-
phage inflammatory protein (MIP)-1α that are primarily
responsible for attracting monocytes into the synovium
[16•,17]. SF can also secrete the chemokines IL-8,
RANTES and MIP-1β. Recent data have shown that SF
can attract CD4 cells into the synovium by antigen inde-
pendent mechanisms through the release of IL-16 [18•].

The possibility that cells of mesenchymal origin may be
instrumental in triggering the initial phases of inflammatory
arthritis was recently raised by Zvaifler et al [19,20].

Mesenchymal stem cells were isolated from the peripheral
blood and synovial fluid of patients with inflammatory syn-
ovitis. These cells displayed osteocyte and osteoclast
morphology, and stained positive for tartrate resistant alka-
line phosphatase, vimentin and collagen-1 but not vascular
cell adhesion molecule-1. They also expressed receptors
for bone morphogenic protein (BMP), a heterodimer
expressed by mesenchymal stem cells. Cells of similar
appearance were found in the joints of mice with collagen-
induced arthritis before the onset of visible synovitis. The
presence of these cells in the bare area of the joint sug-
gests that these cells may migrate into the synovium via
interconnecting channels from the bone marrow. Further-
more, these cells released the chemokine stromal-derived
factor-1, which stimulated transmigration of T and B cells
and enhanced their viability. These observations provide
an alternative model of inflammation in which the mes-
enchymal cell is the key effector cell inducing synovitis by
recruiting and retaining lymphocytes in the joint space.

Modulation of inflammation: pro- and anti-
inflammatory cytokines
A common thread emerging from studies of the synovium is
the presence of cytokine networks involving complex inter-
actions between lymphocytes, synovial fibroblasts and
macrophages. The release of IL-1 or TNF-α by mono-
cytes/macrophages followed by activation of resident tissue
cells (fibroblasts, endothelial cells, stromal cells) triggers the
cascade, which can in turn amplify or suppress inflammation
by releasing cytokines and/or growth factors. The SF

Table 1

Effector molecules released by synovial fibroblasts

Signal function Effector molecules

Angiogenesis IL-8, TGF-β, PDGF, GM-CSF, G-CSF,
FGF, VEGF, EGF

Chemoattractant IL-8, IL-16, MCP-1, MIP-1α

Pro-Inflammatory IL-1, IL-6, IL-7, IL-8, IL-11, IL-15, LIF, PDGF,
MIF, GM-CSF, TRX

Anti-Inflammatory p55 TNFR, p75 TNFR, IL-10

Matrix degradation PGE2, collagenase, stromelysin, 92 kD
gelatinase, cathepsins B, L, and K

Inhibit matrix degradation TIMP, TGF-β IL-11

Osteoclastogenesis RANKL, VEGF

Bone formation TGF-β, BMP-2

EGF, epidermal growth factor; FGF, fibroblast growth factor; G-CSF,
granulocyte colony stimulating factor; GM-CSF, granulocyte-
macrophage colony stimulating factor; IL, interleukin; LIF, leukemia
inhibitory factor; MIF, macrophage inhibitory factor; PDGF, platelet
derived growth factor; RANKL, receptor activity of nuclear factor κB
ligand; TGF, transforming growth factor; TIMP, tissue inhibitors of
metalloproteinases; TNFR, tumor necrosis factor receptor; TRX,
thioredoxin; VEGF, vascular endothelial growth factor.
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secrete a number of different cytokines that exert pleiotropic
effects on monocyte/macrophages, T and B lymphocytes,
mesenchymal cells and bone marrow cells [21].

Synovial fibroblasts release growth factors (granulocyte-
macrophage colony stimulating factor and colony stimulat-
ing factor-1) that regulate the development and activation
of hematopoietic cells and their precursors [21,22]. They
can trigger the acute phase response through secretion of
the IL-6-type cytokines (IL-6, IL-11 and Leukemia Inhibitory
Factor) [23]. Release of IL-15 and, to a lesser extent, IL-7
promotes T-cell activation and expansion [24]. Unstimu-
lated SF produce abundant quantities of macrophage
inhibitory factor (MIF), a cytokine with a broad range of
pro-inflammatory actions including induction of TNF-α
secretion by macrophages, enhancement of macrophage
phagocytosis and intracellular killing, and T-cell activation
[25]. Low concentrations of dexamethasone stimulated
release of macrophage inhibitory factor from SF, while
IL-1β, TNF-α and interferon-gamma had no effect. Both
β-fibroblast growth factor and platelet derived growth
factor are mitogenic for SF and, as mentioned earlier, are
important angiogenic factors. Platelet derived growth
factor promotes anchorage-independent cell growth in
synovial fibroblasts, a characteristic attributed to trans-
formed cells. Immunolocalization of thioredoxin to SF and
monocytes in the rheumatoid synovial lining unveils the
presence of a pro-inflammatory pathway induced by oxida-
tive stress [26]. Thioredoxin augments secretion of TNF-α
and IL-1, and also blocks apoptosis.

The simultaneous production of endogenous anti-inflam-
matory cytokines highlights the presence of complex regu-
latory pathways in the inflamed joint. These inhibitory
proteins can specifically block the biologic activity of the
early-response cytokines IL-1 and TNF or exert more
global suppressive actions on cytokine release. SF
secrete both the p55 and p75 soluble TNF receptors that
can bind and neutralize TNF-α. They also express mRNA
for the IL-1 receptor antagonist, but the intracellular
protein is not secreted, making it unlikely that it blocks IL-1
actions in the synovial tissue [1••].

We recently described the immunolocalization of IL-10 to
both monocytic and fibroblastoid synoviocytes in the lining
layer of inflamed synovial membranes (Ritchlin and Haas-
Smith, submitted). Fibroblast synoviocytes constitutively
produced IL-10 in serial culture that was enhanced by
TNF-α and IL-1β. IL-10, a potent cytokine synthesis
inhibitor, can block the release of monokines, lymphokines
and class II MHC expression by monocytes. It is present in
relatively high levels in inflamed joints, although addition of
exogenous IL-10 to dispersed rheumatoid synovial mem-
branes further suppressed IL-1 and TNF production,
emphasizing a relative deficiency of anti-inflammatory
cytokines in diseased joints [27].

Matrix degradation
A fundamental aspect of inflammatory synovitis is the
erosion of articular cartilage and bone by the pannus. The
seminal work of Gay et al illustrated that SF can promote
cartilage degradation in the absence of T cells or mono-
cytes in the SCID mouse [11••]. Subsequent in vitro
studies have expanded on these initial observations and
provide a framework to better understand the mechanisms
that underlie the invasive properties of SF. Addition of puri-
fied macrophages and fibroblasts to radiolabeled cartilage
discs resulted in cartilage degradation by osteoarthritis and
RA SF but not fibroblasts derived from skin or bone
marrow [28•]. Erosion of cartilage was augmented by addi-
tion of TNF-α, IL-1β and IL-6. Degradation occurred only
when SF were in direct contact with cartilage and CD44
was involved in the fibroblast–cartilage interaction. The
enhancing effect of IL-1 on cartilage destruction, and the
requirement of β1, α4, α5 and αV integrin expression for
fibroblast invasion, were noted using a similar in vitro
model [29•]. Taken together, these studies demonstrate
that SF can invade bone in the absence of other immune
cells but this invasiveness can be dramatically increased by
exposure to pro-inflammatory cytokines. Furthermore,
expression of adhesion molecules and integrin receptor
engagement is required for cartilage invasion.

Degradation of the extracellular matrix is mediated by a
number of different enzymes including cathepsin B and
cathepsin L, serine proteases and metalloproteinases
(MMP). The MMPs collagenase (MMP-1) and stromelysin
(MMP-3) are expressed by SF in situ, and production of
these enzymes by cultured SF can markedly increase under
direct contact with T cells or exposure to pro-inflammatory
cytokines [30•]. The prostanoid PGE2, another mediator of
bone resorption, is similarly secreted in large quantities by
these cells. The role of cathepsin B and cathepsin L in
mediating bone erosion is of questionable relevance
because these enzymes function optimally at a pH lower
than that observed in the synovial microenvironment. The
activity of MMPs is counterbalanced by tissue inhibitors of
metalloproteinases (TIMP), also produced by lining cells of
fibroblast lineage. Transforming growth factor-β, IL-6 and
IL-11 enhance TIMP production, but in studies of rheuma-
toid synovial membranes MMPs are present in excess of
their natural inhibitors favoring catabolism. Bone mor-
phogenic protein-2 may also participate in this compen-
satory response by stimulating new bone formation [31].

Cells at the site of bone erosion in RA display phenotypic
features of osteoclasts [32•]. A pathway leading to osteo-
clast differentiation and proliferation was recently
described [32•]. It has been shown that bone resorption is
stimulated through the upregulation of RANKL, a mem-
brane-bound member of the TNF family. RANKL binds to
its receptor RANK expressed by osteoclast precursors
[33•]. Macrophage colony stimulating factor (M-CSF) and
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RANKL are required for osteoclast differentiation from
progenitor cells and subsequent activation, although
VEGF can substitute for M-CSF [34]. RANKL mRNA was
detected by reverse transcriptase polymerase chain reac-
tion (RT-PCT) in rheumatoid arthritis (RA) synovium but not
normal tissues [35•]. In addition, RANKL mRNA was
expressed by synovial fibroblasts and activated T lympho-
cytes derived from RA synovium. These findings suggest
that synovial fibroblasts can directly promote the formation
and activation of osteoclasts at sites of bone erosion in RA.

Conclusions
The synovial fibroblast has emerged as a pivotal effector
cell in the inflamed joint, based on its ability to degrade the
extracellular matrix and to provide chemotactic and activa-
tion signals to resident parenchymal cells and infiltrating
immunocytes. In vitro studies have demonstrated that cul-
tured synovial fibroblasts display unique properties that
set them apart from fibroblasts isolated from different
anatomic sites. These cells, most importantly, release an
impressive array of cytokines and growth factors, which
have the capacity to stimulate and, in some cases,
dampen the inflammatory response. However, the impact
of these effector molecules on the pathobiology of synovi-
tis must be viewed in the context of a cytokine network
involving complex cellular interactions both locally and sys-
temically. Exploring the interaction between monocytes
and SF may yield valuable insights given the close apposi-
tion of these cells in the synovial lining and the key role of
TNF in the early phases of synovitis. Moreover, therapeutic
strategies that inhibit SF effector pathways responsible for
angiogenesis, pro-inflammatory cytokine release and
matrix degradation should significantly diminish joint
inflammation and prevent bone resorption.
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