
Page 1 of 10
(page number not for citation purposes)

Available online http://arthritis-research.com/content/9/S1/S5

Abstract
Establishment of skeletal metastasis involves bidirectional inter-
actions between the tumor cell and the cellular elements in the
bone microenvironment. A better understanding of the patho-
physiology of bone metastasis will be critical in developing the
means to prevent bone metastasis or inhibit its progression. The
receptor activator of nuclear factor-κB (RANK)/RANK ligand
pathway has emerged as the key pathway regulating osteolysis in
skeletal metastasis. A number of candidate factors, including the
Wnt (wingless int) proteins, endothelin-1, and bone morphogenetic
proteins, have been implicated in the establishment of osteoblastic
metastasis. The complex nature of tumor-bone microenvironment
interactions and the presence of multiple pathways that lead to
bone metastasis suggests that simultaneous targeting of these
pathways in the metastatic cascade are required for effective
treatment. This review discusses current understanding of the
pathophysiologic mechanisms that underlie the establishment of
bone metastasis and potential molecular therapeutic strategies for
prevention and treatment of bone metastasis.

Introduction
Metastases from carcinomas are the most common malignant
tumors involving bone. It is estimated that there will be
1,444,920 new cases of cancer and 559,650 cancer deaths
in USA in 2007 [1]. Prostate, breast, and lung cancers are
the most common malignancies in adults and are the most
common tumors that metastasize to bone [1,2]. Moreover,
bone metastasis affects more than 60% of advanced stage
breast and prostate cancer patients [2]. Carcinomas of lung,
kidney and thyroid, and melanomas are other common tumors
that metastasize to bone [2].

Bone metastasis is associated with increased morbidity and
portends a poor outcome, with decreased survival, in cancer
patients [3,4]. Bone metastases are classified as osteolytic,
osteoblastic, or mixed, based on their radiographic appear-
ance [4]. Bone metastases from prostate cancer are
predominantly osteoblastic, whereas metastatic lesions in

bone from breast cancer can be osteoblastic, osteolytic, or
mixed. Irrespective of the mechanisms that are involved in the
generation of these radiographic phenotypes, the end result
is a change in bone architecture, which predisposes the
patient to a variety of skeletal complications [3,5].

Molecular mechanism of bone metastasis
Sir Stephen Paget enunciated the ‘soil and seed hypothesis’
more than a century ago, stating that certain tumor cells
(seeds) will selectively colonize distant organs (soil) because
of the presence of a favorable environment for their
localization and growth [6]. Metastasis to bone is a complex
multistep event, which involves a bidirectional interaction of
the tumor cells with cellular elements in three different micro-
environments [7]: the site of primary neoplasm, the circula-
tion, and the bone microenvironment. The metastatic tumor
cells must escape from the primary tumor into the circulation
and reach the skeletal sites, where they establish themselves,
proliferate, and then induce metastatic lesions [7]. The
preferential skeletal localization of tumor cells is attributed to
the biologic and molecular characteristics of tumor cells as
well as the bone microenvironment [4,7-10]. The patho-
physiology of bone metastasis is poorly understood.
According to the traditional model of metastasis, the potential
to metastasize resides in a small subset of tumor cells that
have acquired this property through a set of mutations that
occur during the later stages of tumor progression [11]. An
emerging concept has recently challenged this existing model
of metastasis by demonstrating that the potential to meta-
stasize is encoded in the bulk of the tumor and is present
early in tumor pathogenesis [11-14].

Recent work by Kang and coworkers [15] in a mouse
intracardiac model of bone metastasis has demonstrated the
presence of a tissue-specific metastatic phenotype that is
associated with and promoted by a specific set of genes that
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pre-exist in the primary tumor. Furthermore, these distinctive
bone metastasis gene signatures are different from the poor
prognosis gene expression signatures [13,14]. Kang and
coworkers hypothesized that the poor prognosis gene
signature facilitates the emergence of metastatic cells in the
primary tumor, but the specific set of genes associated with
bone metastasis is responsible for the cellular activities
necessary to form bone metastasis [13-15]. Over-expression
of the bone metastasis specific gene set (namely the genes
encoding C-X-C chemokine receptor [CXCR]4, IL-11,
connective tissue growth factor, and matrix metalloproteinase
[MMP]-1), along with the osteopontin gene, in various
combinations considerably enhanced the metastatic potential
of breast cancer cells to bone in this model. In addition, each
of these genes, when expressed individually, failed to confer
high skeletal tropism [15]. The bone metastasis specific
genes encode mostly cell surface and secretory proteins,
which participate in multiple steps involved in homing,
invasion, angiogenesis, and proliferation of tumor cells in the
bone microenvironment [15].

Smid and coworkers [16] analyzed 107 primary human
breast tumors in order to identify genes associated with
breast cancer metastasis to bone. These investigators also
identified distinct poor prognosis and bone metastasis
signatures in primary breast tumors. Again, ability to
metastasize is distinct from the potential to home to bone and
form a bone metastasis.

The data reported by Kang [15] and Smid [16] and their
coworkers demonstrate that ability to form a bone metastasis
is associated with a bone metastatic phenotype. The goal is
therefore to develop specific therapies that can inhibit these
genes in primary tumors and prevent or reduce metastasis to
bone.

Bone as a unique environment for metastasis
Bone metastases are usually multifocal and have a pre-
dilection for the hematopoietic marrow sites in the proximal
long bones and axial skeleton (vertebrae, pelvis, ribs, and
cranium) [9]. Continuous and dynamic turnover of the bone
matrix and bone marrow provides a fertile ground for tumor
cells to utilize the vast available resources (cells, growth
factors, cytokines, and receptors) for their homing and
subsequent proliferation [17]. Both anatomic and molecular
characteristics of bone make it a favorable site for metastasis
[9]. Abundant sinusoids and sluggish blood flow in the
metaphysis facilitate an intimate interaction between
endothelium and tumor cells, which is necessary for their
initial colonization in the bone marrow [9,18]. Moreover, it
appears that a subset of bone marrow cells (vascular
endothelial growth factor receptor-1 expressing hemato-
poietic progenitor cells and fibroblasts) may form a
‘premetastatic niche’ in response to the humoral factors
secreted by the primary neoplasm. The cells comprising the
premetastatic niche express cell surface ligands and

receptors (integrin and fibronectin), which provide a
permissive environment for the migrating tumor cells [19]. In
addition, various growth factors and cytokines in the bone
marrow such as endothelin (ET)-1, basic fibroblast growth
factor, transforming growth factor (TGF)-β, IL-6, and IL-8
serve as paracrine regulators of the initial growth of
metastatic tumor cells [20]. The interaction of receptor
molecules in the bone marrow stroma (urokinase receptor,
vascular cell adhesion molecule-1, and fibronectin) with the
ligands that are over-expressed on the tumor cells (β1,
α4β1 and α5β1 integrins, cadherin-11, connective tissue
growth factor, and CXCR4) promotes colonization of
circulating malignant cells in the bone marrow [9,21]. The
extracellular matrix proteins (especially type I collagen, type IV
collagen, vitronectin, fibronectin, osteopontin, osteocalcin,
bone sialoprotein, osteonectin, and stromal cell derived
factor-1) are chemotactic for tumor cells and promote
colonization of circulating tumor cells in the bone marrow
[9,22,23].

The bone matrix is a vast storehouse of latent growth factors
such as insulin-like growth factor, TGF-β, bone morpho-
genetic protein (BMP), platelet-derived growth factor, and
vascular endothelial growth factor. The release of these
factors during bone remodeling may promote cell homing and
appears to promote colonization and initial proliferation of
tumor cells [24,25]. Release of these factors during the
formation of both osteolytic and osteoblastic lesions
stimulates a vicious cycle of tumor growth that leads to tumor
cell proliferation and progression of bone lesions [26,27].

Mechanism of osteolytic and osteoblastic
metastasis
Bone metastases are classified as osteolytic, osteoblastic, or
mixed osteolytic and osteoblastic, based on their radio-
graphic appearance [4]. These phenotypes are a reflection of
the interactions between tumor cells and cellular elements
(osteoclasts and osteoblasts) of the bone microenvironment.
Previous studies conducted in our laboratory and others have
demonstrated that human cancer cells that metastasize to
bone are characterized by a distinct cytokine profile, which
dictates the final phenotype of the skeletal lesion [28,29]. We
demonstrated that human prostate cancer cells that produce
osteolytic lesions over-expressed factors such as IL-1,
receptor activator of nuclear factor-κB ligand (RANKL), and
tumor necrosis factor (TNF)-α, which are involved in the
stimulation of osteoclast differentiation and activation [28]. In
addition, we also showed that human prostate cancer cell
lines forming osteoblastic lesions produced factors such as
BMP, osteoprotegerin (OPG), and TGF-β, which are associa-
ted with bone formation [28].

Osteolytic metastasis
The most common manifestation of bone metastasis is
osteolysis [26,27]. Numerous in vivo studies in animals
suggest the existence of a vicious cycle in the pathogenesis
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and progression of an osteolytic metastasis [4,26,27]. This
complex vicious cycle includes reciprocal interactions
between tumor cells, bone cells (osteoclasts and osteo-
blasts), and the bone matrix (Figure 1). The tumor cells
secrete various soluble factors that promote osteoclast
differentiation, proliferation, and activation, which leads to
increased osteolysis (Table 1). Growth factors (TGF-β,
insulin-like growth factor, basic fibroblast growth factor, and
BMP) mobilized from bone following osteolysis support the
growth and survival of the tumor cells [4,24,26,27]. In return,
the growing tumor secretes more pro-osteolytic factors,
which results in further osteolysis and perpetuation of the
vicious cycle. A better understanding of the complex tumor
cell-host cell interactions in the bone microenvironment, and
of the autocrine and the paracrine effects of the secreted
factors (tumor cells) and released factors (from bone matrix)
will facilitate development of effective strategies to inhibit
disease progression [26].

The osteoclasts, which are derivatives of the pluripotent
hematopoietic precursors in the marrow, are the primary cells
involved in tumor-mediated osteolysis [30]. Osteoclast
differentiation and maturation is the critical cellular process
involved in the pathophysiology of osteolytic metastasis
[31,32]. The OPG/receptor activator of nuclear factor-κB
(RANK)/RANKL pathway has emerged as the key pathway
regulating osteoclast formation and survival in physiologic
and pathologic states, including skeletal metastases [33,34].

RANKL is a member of the TNF ligand superfamily and is
expressed on numerous cell types, including osteoblast/
stromal cells [35]. RANKL exists either as a membrane bound
or a soluble isoform, and it is the principal ligand for RANK
[36]. RANK is a TNF receptor that is expressed on
osteoclasts and dendritic cells [37]. RANK-RANKL inter-
action in the presence of macrophage colony-stimulating
factor activates multiple intracellular signaling cascades
(nuclear factor-κB, p38 mitogen-activated protein kinase,
cellular Src kinases, and Jun amino-terminal kinases) in the
precursor osteoclasts [31,32,38]. Stimulation of these
pathways eventually results in increased formation, matura-
tion, and survival of osteoclasts [31,32]. OPG - the third
member of the triad - is a secreted TNF receptor that acts as
a soluble decoy receptor for RANKL and TNF-related
apoptosis-inducing ligand (TRAIL) [39,40]. OPG is a
negative regulator of the RANK/RANKL pathway and prevents
RANK-RANKL interaction by sequestering RANKL. Hence,
OPG decreases osteoclastogenesis and promotes osteo-
clast apoptosis [35,39,40].

Laboratory studies have demonstrated the integral involve-
ment of the OPG/RANK/RANKL axis in the pathogenesis of
osteolytic skeletal metastasis. The tumor cells secrete
numerous cytokines and growth factors, including parathyroid
hormone-related peptide (PTHrP), IL-1, IL-6, IL-8, IL-11, and
TNF-α, which upregulate expression of RANKL on
osteoblast/stromal cells (Table 1) [26,34]. PTHrP is one of
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Figure 1

Vicious cycle in osteolytic bone metastasis. The pro-osteolytic factors secreted by the tumor cells (PTHrP, IL-1, IL-8, IL-11, soluble RANKL, TNF-α,
and PGE) promote osteolysis by stimulating osteoclast formation and maturation. The growth factors secreted following osteolysis (BMP, IGF, and
TGF-β) are stimulatory for tumor growth, which results in increased tumor burden and eventually more osteolysis. The inset delineates the
regulation of osteoclast formation and activation. RANKL on the osteoblast/stromal cells interacts with the RANK on the osteoclast precursors in
the presence of M-CSF to stimulate their differentiation into mature osteoclasts. An alternate pathway (RANKL independent) of osteoclast
differentiation (mediated by IL-1 and its receptor IL-1R on the osteoclast) is also shown. BMP, bone morphogenetic protein; IGF, insulin-like growth
factor; M-CSF, macrophage colony-stimulating factor; OB, osteoblast; OCL, osteoclast; PG, prostaglandin; PTHrP, parathyroid hormone related
peptide; IL, interleukin; RANKL, receptor activator of nuclear factor-κB ligand; TGF, transforming growth factor; TNF, tumor necrosis factor.



the major mediators of breast cancer related hypercalcemia
and osteolytic bone metastasis [41]. PTHrP contributes to
osteolysis by upregulating expression of RANKL on osteo-
blasts [26,41]. Experiments in our laboratory and others have
demonstrated increased secretion of soluble RANKL by
human prostate cancer cells, forming osteolytic lesions
[28,42,43]. A prior study in our laboratory using a mouse
intratibial injection model of metastasis demonstrated that
blocking the RANK-RANKL interaction by RANK-Fc (a
recombinant soluble fusion protein consisting of extracellular
domain of RANK coupled with the Fc domain of human IgG)
limits the formation of osteolytic bone lesions [44]. In another
study, conducted in the same animal model, exogenous
RANK-Fc administration was effective at preventing osteo-
lysis and reducing tumor volume in mixed osteolytic and
osteoblastic bone lesions [45]. However, blocking the OPG/
RANK/RANKL pathway with RANK-Fc had no effect on tumor
cells in nonosseous sites; the decrease in tumor burden
following inhibition of the tumor-mediated osteolysis is an
indirect effect secondary to interruption of the vicious cycle of
osteolytic metastasis [43-45].

Recently, we noted that simultaneous blocking of the
osteolytic and osteoblastic pathways in a metastatic mixed
lung cancer lesion of bone is superior to inhibition of either
pathway alone [45]. Because many metastatic lesions in
bone are considered mixed (although the lytic or the blastic
phase may be predominant), therapeutic strategies that
target both the osteolytic and osteoblastic components may

be necessary to inhibit progression of a skeletal metastatic
lesion effectively.

These studies clearly highlight the pivotal role of the
OPG/RANKL axis in the pathogenesis of tumor-mediated
osteolysis in a pure lytic as well as a mixed metastatic skeletal
lesion. The ratio of RANKL to OPG has also been postulated
as one of the factors that determines the final phenotype
(osteolytic versus osteoblastic) of the skeletal metastasis
[33,46,47]. Osteolysis is characterized by an increase in the
ratio of RANKL to OPG; tumor-secreted factors that have
been implicated in osteolysis increase this ratio by up-
regulating the RANKL expression on osteoblasts/stromal
cells or by downregulating OPG secretion [26,34,41].

Cytokines such as IL-6, TNF-α, IL-1, and IL-8 can stimulate
osteoclastogenesis independent of RANKL [47,48]. Bendre
and coworkers [47] demonstrated that IL-8 binds to CXCR1
present on osteoclast precursors and enhances osteoclast
differentiation independent of RANKL. The contribution of
these RANKL independent pathways to the osteoclasto-
genesis associated with osteolytic metastasis is not clear at
present [47-49].

Osteoblastic metastasis
Osteoblasts are the key cells involved in forming the woven
bone seen in osteoblastic metastasis [4,5,27]. Tumor cells
forming osteoblastic metastases secrete numerous pro-
osteoblastic factors (cytokines, transcription factors, and
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Table 1

Pro-osteolytic tumor-secreted factors and their described role in the pathogenesis of osteolytic metastasis

Tumor-secreted factors Role in the pathogenesis of osteolytic metastasis

PTHrP Upregulates RANKL expression and decreases OPG expression [26,41]

Soluble RANKL Stimulates osteoclastogenesis by binding directly to RANK [43]

IL-6 Increases osteoclastogenesis via gp130 signal transduction pathway; enhances the effect of PTHrP [48]

IL-1 Increases osteoclastogenesis (RANKL dependent and independent pathway); promotes osteoclast activation and 
survival [78,79]

TNF-α Increases osteoclastogenesis and osteoclast activation (via gp130 signal transduction pathway as well as RANKL 
primed pathway) [80,81]

IL-8 Increases osteoclastogenesis by direct stimulation of CXCR1 receptors on the osteoclast precursor [47]

IL-11 Increases osteoclastogenesis via gp130 signal transduction pathway [48,82]

M-CSF Upregulates RANKL expression on stromal cells; chemotactic role for attracting osteoclasts to resorptive sites and 
prolongs survival of the mature osteoclast by inhibiting apoptosis [83]

TGF-β Inhibits osteoclast formation but can also directly stimulate osteoclast formation (in absence of RANKL) [49]

Prostaglandin Upregulates RANKL expression and enhances the effect of soluble RANKL [26,84]

VEGF Induces angiogenesis and promotes osteoclastogenesis [85]

MMPs Assist osteoclast mediated bone resorption [86]

CXCR, C-X-C chemokine receptor; IL, interleukin; M-CSF, macrophage colony-stimulating factor; MMP, matrix metalloproteinase; OPG,
osteoprotegerin; PTHrP, parathyroid hormone-related peptide; RANKL, receptor activator of nuclear factor-κB ligand; TGF, transforming growth
factor; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.



growth factors) that switch normal bone remodeling toward a
predominant bone-forming state (Table 2). These factors
stimulate various steps that are involved in the differentiation,
proliferation, and maturation of osteoblasts or inhibition of
osteoclast pathways [4,27] (Table 2). Activated osteoblasts
secrete numerous growth factors during the formation of
woven bone (TGF-β, BMP, and vascular cell endothelial
growth factor), which are used by tumor cells to potentiate
their survival and growth. The growing tumor secretes more
pro-osteoblastic factors, thereby amplifying the formation of
woven bone and perpetuating the vicious cycle [4,50].

In 1958, Roland [51] introduced the theory that every primary
or metastatic cancer in bone (including osteoblastic prostate
cancers) begins with osteolysis. Whether initial osteolysis is
required for development of osteoblastic metastasis is unclear
[28,43,44,52]. Bisphosphonates and other agents that inhibit
osteoclastic activity have failed to prevent formation of
osteoblastic lesions in murine models of metastasis, which is
indirect evidence that osteoblastic lesions can form in the
absence of initial osteoclastic activity [28,43,53]. In a mouse
tibial injection model using human prostate cancer cells that
produce osteoblastic metastasis, Lee and coworkers [54]
demonstrated that zoledronate failed to halt the formation of
osteoblastic lesions, indicating that osteoclasts may not be
essential in the establishment of osteoblastic metastasis.
Using a similar animal model, Whang and coworkers [44]
administered RANK-Fc to block osteolysis in an attempt to

prevent the establishment of osteoblastic lesions by human
prostate cancer cells. RANK-Fc treatment failed to prevent or
delay the establishment of osteoblastic lesions, but overall
tumor growth was limited. These findings suggest that
blocking osteolytic activity is important even when treating
osteoblastic lesions because it slows the release of growth
factors from bone matrix that may enhance tumor proliferation.

The Wnt (wingless int) pathway, the ET axis, and the BMP
pathway have emerged as key regulators of the establishment
of osteoblastic skeletal metastasis [25,52,55]. Wnt proteins
are soluble glycoproteins that promote embryonic and
postnatal bone formation [56]. These proteins bind to a
membrane receptor complex comprised of frizzled (FZD)
G-protein-coupled receptor and a low-density lipoprotein
receptor-related protein [56]. The formation of this ligand-
receptor complex initiates a number of intracellular signaling
cascades that modulate differentiation, survival, and activity of
the osteoblasts. Prostate cancer cells forming osteoblastic
and mixed osteoblastic and osteolytic metastases express a
variety of Wnt proteins [52,57]. Hall and coworkers [52]
recently explored the roles played by the autocrine and
paracrine effects of Wnt proteins in the establishment of
osteoblastic metastatic prostate cancer. Limiting the activity
of Wnt proteins by their natural antagonist Dickkopf-1
decreased the osteoblastic component of mixed osteolytic
and osteoblastic bone lesions produced by human prostate
cancer cells in an intratibial injection model [52].
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Table 2

Pro-osteoblastic tumor-secreted factors and their described role in the establishment of osteoblastic metastasis

Tumor-secreted factors Probable mechanisms underlying new bone formation in osteoblastic metastases 

Wnt Stimulates differentiation and activation, and promotes survival and activity of osteoblasts; inhibits osteoclast 
activity [52]

ET-1 Stimulates proliferation of osteoblasts, promotes mineralization, inhibits osteoclast motility, and potentiates the 
pro-osteogenic effects of other growth factors [59,60]

BMP Stimulates osteoblast proliferation, activity, and survival; increases OPG production [62-66]

IGF-1, IGF-2 Stimulate osteoblast proliferation and survival [87]

IL-6 Regulates osteoblast function [88]

OPG Inhibits osteoclastic activity by binding to RANKL [89]

TGF-β Stimulates osteoblast proliferation [90]

Urokinase (uPA) Stimulates osteoblast proliferation [91]

PDGF-BB Promotes angiogenesis and osteoblast activity [92]

FGF-1, FGF-2, and FGF-8 Promote differentiation and proliferation of osteoblasts [93]

PSA Inactivation of PTHrP and stimulation of latent growth factors (TGF-β) [94]

VEGF Promotes osteoblast differentiation [95]

MDA-BF-1 Stimulates osteoblast formation and activation [96]

BMP, bone morphogenetic protein; ET, endothelin; FGF, fibroblast growth factor; IGF, insulin-like growth factor; OPG, osteoprotegerin; PDGF,
platelet-derived growth factor; TGF, transforming growth factor; PSA, prostate-specific antigen; PTHrP, parathyroid hormone-related peptide; uPA,
urokinase plasminogen activator; Wnt, wingless int; VEGF, vascular endothelial growth factor.



Nelson and coworkers [55] first hypothesized that there is an
association between ET-1 and osteoblastic metastasis in
patients with advanced prostate cancer. ET-1 promotes
osteogenic differentiation, stimulates bone matrix formation,
and inhibits osteoclast formation and motility [58]. The
paracrine effects of ET-1 in the bone microenvironment are
predominantly mediated by ET receptor subtype A (ETA)
receptors [55,58-60]. Yin and coworkers [58] demonstrated
that both human prostate and breast cancer cell lines that
form osteoblastic lesions in the bone produce ET-1. Blocking
the ET axis by exogenous administration of an ETA receptor
antagonist decreased the number of osteoblastic lesions
formed in nude mice following intracardiac injection of human
breast cancer cells.

Considering the integral role played by BMP in skeletal
development and postnatal bone repair, BMP was
hypothesized to be involved in the new bone formation
observed in bone metastasis [61,62]. The BMPs, especially
BMP-2, BMP-6 and BMP-7, are known to play a critical role
in formation of osteoblastic bone metastasis by virtue of their
osteo-inductive and cell type specific proliferative activity
[25,45,61-65]. Studies conducted in our laboratory and
others have shown that human prostate, lung, or breast
cancer cells forming osteoblastic bone metastasis secrete a
variety of BMPs and express BMP receptors [25,45,64-66].
In addition, BMPs stimulate invasion, migration, and
proliferation of human prostate and lung cancer cells, which
suggests participation of BMPs in an autocrine loop to
regulate tumor growth [25,45]. Finally, blocking the effect of
BMPs with noggin (an endogenous antagonist of BMP) leads
to a decrease in the formation of osteoblastic lesions in a
mouse intratibial injection model [45].

Although the animal models that are currently available
provide useful data, they do not truly simulate metastatic
disease. Transgenic mouse models and syngeneic models of
breast and prostate cancer exhibit a low incidence of
metastasis to bone and lack reproducibility [67]. The injection
of tumor cells into a metastatic site (long bones) does not
allow one to evaluate the factors associated with tumor cell
migration, invasion, and preferential localization to a particular
metastatic site. Intracardiac injection of tumor cells does not
truly simulate metastasis from prostate, breast, or lung tumors
because it bypasses the early steps in the metastatic
process. In addition, it may take months for lesions to form,
limiting the feasibility of these experiments. It is essential to
recognize these limitations when using these animal data to
develop a therapeutic strategy in humans [67].

Therapeutic implications and molecular
treatment strategies
The ultimate goal of treating metastatic bone disease is either
to prevent a bone lesion from developing or to limit the
progression of an established bone metastasis. At present
our understanding of the development of bone metastasis is

limited. Therefore, the currently available therapies (bisphos-
phonates, radiotherapy, radiopharmaceuticals, and surgery)
for bone metastasis focus on symptomatic management and
limiting the progression of established metastatic disease
[2,4]. Considering the complex nature of the tumor-bone
microenvironment interactions and the existence of multiple
pathways that are involved in the development of bone
metastasis, it is plausible that simultaneous targeting of
multiple steps in metastasis formation will be superior to
inhibiting one specific target [45,68].

Identification of pathways and molecular checkpoints in the
pathogenesis of skeletal metastasis has led to discovery of
novel molecular targets for therapeutic intervention (Table 3).
Following their success in preclinical animal studies, most of
these agents are being tested in clinical trials to assess their
safety profile and efficacy in debulking established bone
metastases (Table 3). It may be more appropriate to develop
combination therapeutic strategies to prevent metastasis
rather than attempting to limit progression of established
disease. Patients with established metastatic disease may
benefit from a combination of agents that not only affect bone
turnover but also inhibit or kill tumor cells. For example, direct
injection of agents into bony metastatic sites to kill tumor
cells and limit bone destruction may confer relief from pain
and improve quality of life, as well as limiting the progression
of metastatic disease. The availability of computed
tomography guided injection techniques would permit
precise targeting of anatomic regions that are difficult to
reach without extensive surgical procedures, such as pelvis,
spine, and proximal femur.

The OPG/RANK/RANKL pathway offers multiple molecular
checkpoints for therapeutic targeting in osteolytic metastases
[34]. Abrogation of this axis has demonstrated therapeutic
efficacy in restricting tumor-mediated osteolysis in vitro as
well as in animal models of metastasis [31,34,43-45].
Recombinant OPG construct was one of the first RANKL
inhibitors to be used in clinical trials for osteolytic metastatic
disease [69]. In a randomized, double-blind, phase I clinical
trial, a single subcutaneous dose of recombinant OPG
construct was well tolerated and effective in suppressing
bone resorption in multiple myeloma and breast cancer
patients with established skeletal metastasis [69]. However,
the ability of OPG to block the TRAIL apoptosis pathway in
cancer cells was noted, and there were concerns that this
could lead to a flare of tumor growth [70]. Anti-RANKL
antibodies (for instance, denosumab) represent a new class
of RANKL inhibitors that are characterized by high affinity and
specificity for RANKL [71,72]. In addition, they do not inhibit
the TRAIL apoptosis pathway [71]. In a recent randomized,
double-blind, double-dummy, active-controlled multicenter
phase I clinical study, Body and coworkers [72] demon-
strated the effectiveness of denosumab. A single
subcutaneous dose of denosumab (AMG 162) given to
patients with multiple myeloma or bone metastasis from
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breast cancer yielded a dose dependent and sustained
reduction in bone resorption.

Atrasentan (an ETA receptor antagonist) exhibited efficacy in
treatment of osteoblastic lesions in preclinical animal models of
prostate cancer bone metastasis and in phase I and II clinical
trials [55,59]. However, the results of recent phase III clinical
trials of atrasentan in men with metastatic hormone-refractory
prostate cancer were inconclusive [73,74]. In a randomized,
double-blind, placebo-controlled, phase III clinical trial, an
intent-to-treat analysis failed to demonstrate a significant delay
in time to clinical and radiographic progression with atrasentan
as compared with placebo in men with metastatic hormone-
refractory prostate cancer [59,73,74].

Advances in structural deciphering of biomolecules that are
involved in the pathogenesis of bone metastasis, such as
OPG, integrins, and MMP, have allowed scientists to design
molecules that mimic these critical targets [75]. These
artificial, designed molecules can be used to block or
increase the activity of a particular therapeutic target, and
have significant potential in the treatment of bone metastasis
[75,76]. The use of RGD-based peptidomimetics (which
contain sequence of arginine-glycine-aspartic acid) and MMP
inhibitor peptidomimetics in animal models of bone
metastasis is associated with smaller size and decreased
number of osteolytic lesions [76].

Recent discovery of gene signatures and organ-specific
metastasis genes that are predictive of metastatic potential
and organ of metastasis, respectively, is a promising step in
designing strategies to prevent and treat bone metastasis

[15,16]. Further development and validation of bone metastasis
specific genes would theoretically allow stratification of
cancer patients into good or poor metastatic prognosis and
permit patient-tailored therapeutic strategies. However, these
types of therapies may not be feasible from an economic
standpoint [12,77].

Conclusion
Prevention or limitation of established bone metastasis would
significantly improve the quality of lives of patients diagnosed
with advanced lung, prostate, or breast cancer. This is
especially true for prostate cancer patients, in whom
progression of bone metastasis occurs over many years. We
must focus our research efforts on elucidating the factors that
allow the tumor cells to escape into the circulation, deposit in
the bone, and then proliferate to form skeletal lesions. Such
work will enable investigators to develop effective treatment
modalities to prevent as well as treat bone metastasis.
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Table 3

Therapeutic strategies for targeting molecules/pathways involved in the pathogenesis of bone metastasis

Therapeutic strategy Target and rationale for therapy

Recombinant OPG construct Blocks RANKL and TRAIL pathway [69]

Soluble RANK-Fc Blocks the effect of RANKL without any effect on the TRAIL pathway [43-45]

Human monoclonal antibody to RANKL (denosumab) Blocks the effect of RANKL without any effect on the TRAIL pathway [72]

Oligonucleotides to NF-κB, P2X7 receptor antagonists Block the effect of NF-κB activation [97]

Humanized anti-PTHrP monoclonal antibody Inhibits PTHrP-mediated osteolysis via the RANKL pathway [41]

PDGFR antagonist (ST1571, Imatinib mesylate/Gleevec) Inhibits tumor growth and angiogenesis by inhibiting PDGFR tyrosine kinase 
signaling [98]

ETA receptor inhibitor (atrasentan) Blocks ET-1 mediated bone formation in prostate skeletal metastasis [55,58,59]

EMD121974 (cilengitide) Inhibits tumor-ECM interactions involved in tumor metastasis, growth, and 
angiogenesis [76]

MMP inhibitors Inhibit MMP mediated tumor growth, metastasis, and angiogenesis [99]

ECM, extracellular matrix; ET, endothelin; ETA, endothelin receptor subtype A; MMP, matrix metalloproteinase; NF-κB, nuclear factor-κB; OPG,
osteoprotegerin; PDGF, platelet-derived growth factor; PTHrP, parathyroid hormone related peptide; RANKL, receptor activator of nuclear factor-
κB ligand; TRAIL, TNF-related apoptosis-inducing ligand.
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