
Introduction

In 1916, the diabetologist Elliott P Joslin recognized that 

‘hyperglycemic situations appear after infectious diseases, 

painful conditions such as gall stones, and trauma’ [1]. In 

1920, Pemberton and Foster described impaired glucose 

regulation in soldiers with arthritis [2]. In 1924, 

Rabinowitch observed that diabetic patients need much 

more insulin during infection [3]. In 1929, Root sum-

marized the presence of an inadequately high need for 

insulin in diff erent diseases, and he called the pheno-

menon ‘insulin resistance’ (IR) [4].

Over the last century, IR was found in physiological 

states, disease states, and diseases such as diabetes 

mellitus, obesity, infection, sepsis, arthritis of diff erent 

types (including rheumatoid arthritis (RA)), systemic 

lupus erythematosus, ankylosing spondylitis, trauma, 

painful states such as postoperative pain and migraine, 

schizophrenia, major depression, and mental stress, to 

name the most important (chronology of events is 

summarized in Table 1). IR thus seems to be present in 

many diseases states outside the fi eld of diabetology or – 

more specifi cally  – exterior of inherited IR syndromes 

(called the type A syndrome of IR) and also beyond 

autoantibodies to insulin or insulin receptor (type B 

syndrome of IR) [5].

When considering these diseases and disease states, 

one observes two major clusters of clinical entities that 

are linked to IR: infl ammation with an activated immune/

repair system; and increased mental activation. In this 

clearly defi ning distinction, obesity and type  2 diabetes 

mellitus (T2D) can be integrated into the fi rst cluster due 

the infl ammatory aspect of IR in these entities [6-9]. 

However, obesity and consequently T2D might also be 

integrated into the latter cluster because chronic mental 

stress is a well-known forerunner of obesity in 
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Table 1. History of insulin resistance from diff erent perspectives of research in the fi elds of diabetology, infection/

infl ammation, pain, mental activation, trauma, and rheumatology

Year Author Phenomena Reference

1916 Joslin Hyperglycemia in infectious diseases,a painful gallstones,b traumac [1]

1920 Pemberton and Foster Impaired glucose regulation in soldiers with arthritisa [2]

1924 Rabinowitch Enormous doses of insulin needed in infected diabetic patientsa [3]

1929 Root IR in the context of diff erent diseasesa,b,c [4]

1936 Himsworth and Kerr Insulin-sensitive and insulin-insensitive diabetes [106]

1938 Thomsen Traumatic diabetesc [107]

1938 Warren β-cell defects in older longstanding diabetic patients In [108]

1950 Liefmann IR in rheumatoid arthritis (combined glucose and insulin test)a [16]

1956 Arendt and Pattee IR in obese subjects [109]

1957 Collins IR in schizophreniad [110]

1960 Yalow and Berson IR in diabetic subjects (high glucose despite high insulin) [24]

1963 Randle and colleagues Fatty acids support IR [25]

1965 van Praag and Leijnse Major depression induces IRd [111]

1965 Butterfi eld and Wichelow Forearm insulin sensitivity test [112]

1970 Shen and colleagues Quadruple insulin sensitivity test [113]

1979 DeFronzo and colleagues Euglycemic insulin clamp technique in combination with radioisotope turnover,  [114]

  limb catheterization, indirect calorimetry, and muscle biopsy

1979 Wolfe Review: sepsis and trauma induce IRa,b,c [115]

1982 Kasuga and colleagues Insulin induces tyrosine phosphorylation of the insulin receptor [116]

1982 Ciraldi and colleagues Reduced insulin-stimulated glucose uptake in type 2 diabetes [117]

1984 Grunberger and colleagues Dissociation between normal insulin binding and defective tyrosine kinase activity of  [118]

  the insulin receptor

1986 Garvey and colleagues Hyperinsulinemia induces insulin receptor desensitization [119]

1987 Svenson and colleagues IR in rheumatoid arthritisa [17]

1988 Krieger and Landsberg Hypertension, hyperinsulinemia, insulin resistance and SNS [120]

1988 DeFronzo Hyperglycemia decreases glucose transport and inhibits beta-cell function (glucotoxicity) [121]

1988 DeFronzo, Reaven Increased free fatty acids play key role in IR, β-cell dysfunction, and hepatic  [121,122]

  gluconeogenesis (lipotoxicity)

1988 Uchita and colleagues,  Pain infl uences IR via the HPA axis and SNSb [123,124]

 Greisen and colleagues

1992 Feingold and Grunfeld Cytokines like TNF play a role in hyperlipidemia and diabetesa [125]

1993 Hotamisligil and colleagues TNF critically infl uences IRa [34]

1994 Moberg and colleagues Mental stress induces acute IR in type 1 diabetic patientsd [126]

1996 Keltikangas and colleagues Mental stress is accompanied by IR in nondiabetic peopled [127]

1999 Björntrop IR as a consequence of exaggerated HPA axis and SNS activation (CNS stress is the trigger)d [28]

2000 Chrousos Mental stress-induced hypercortisolism induces IR (the pseudo-Cushing state)d [29]

2000 Seematter and colleagues Mental stress acutely increases insulin-stimulated glucose utilization in healthy lean  [128]

  humans but not in obese nondiabetic humansd

2004 Tso and colleagues Patients with systemic lupus erythematosus demonstrate IR independent of  [19]

  autoantibodies to insulin receptora

2005 Kiortsis and colleagues,  Patients with ankylosing spondylitis and rheumatoid arthritis have IR, which is [20,44]

 Stagakis and colleagues reduced after anti-TNF therapya

2007 Larsen and colleagues IL-1ra improved beta-cell secretory function in type 2 diabetic patients (no infl uence on IR)e [129]

2008 Fleischman and colleagues,  Salsalate improved insulin sensitivity in young obese adults and in type 2 diabetic patients [43,130]

 Goldfi ne and colleagues

2010 Schultz and colleagues Patients with rheumatoid arthritis show IR, which can be reduced by blocking IL-6a [45]

2012,  DIAGRAM and colleagues,  Human gene polymorphisms link both infl ammation and metabolic disease [93,131]

2014 Fall and Ingelsson

CNS, central nervous system; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis Consortium; HPA, hypothalamic–pituitary–adrenal; IL, interleukin; IR, 
insulin resistance; OGTT, oral glucose tolerance test; SNS, sympathetic nervous system; TNF, tumor necrosis factor. aInsulin resistance as a consequence of infection or 
infl ammation. bInsulin resistance as a consequence of pain. cInsulin resistance as a consequence of trauma. dInsulin resistance as a consequence of mental activation. 
eApproved by the US Food and Drug Administration for patients with type 2 diabetes mellitus.
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approximately 40% of investigated stressed subjects 

[10-15]. At this point the question is why these two 

disease clusters are linked to IR, which will be addressed 

in the present paper.

Since chronic infl ammatory diseases (CIDs) such as 

arthritis were among the fi rst to be linked to IR [2,16], 

newer work in rheumatology has recognized IR in many 

CIDs [17-20], cytokine-neutralizing strategies decrease 

IR in CIDs [20-22], and CID patients are at increased risk 

to develop T2D [23], the special view from rheumatology 

to IR is understandable and necessary. Th e reader will see 

that IR is not an endocrine disorder per se, but more a 

disorder of several systems, better tackled from an inter-

disciplinary standpoint of neuroendocrine immunology.

Features of insulin resistance and pathophysiology

Originally, IR was defi ned as a subnormal biologic 

response to a certain insulin concentration, whereby the 

word subnormal already suggests illness. In the late 

1950s, Yalow and Berson developed the radio immuno-

assay to measure circulating insulin in the blood. In this 

early paper, they described a state of IR in T2D patients: 

‘… [there is a] lack of responsiveness of blood sugar, in 

the face of apparently adequate amounts of insulin 

secreted …’ [24]. Th e classical characteristics of IR are 

presented in Table  2. Elements given in this table work 

together to induce clinically observed hyperglycemia and 

very low density lipoprotein hyperlipidemia (trigly cer-

ides) despite elevated insulin levels.

IR is measured by diff erent techniques, whereby the 

gold standard is the hyperinsulinemic euglycemic clamp 

and the silver standard is the frequently sampled 

intravenous glucose tolerance test (Table 3). To study IR 

or insulin sensitivity in CIDs, simple fasting indices are 

often used such as the homeostasis model assessment 

insulin resistance and the Quicki (Table  3), which are 

adequate when applied in larger clinical studies.

Pathophysiology of insulin resistance – a chronology of 

models

Th e fi rst viable theory on IR was presented by Randle, 

who suggested that IR in muscle and adipose tissue is 

based on the glucose–fatty acid cycle [25]. Th e theory 

suggested that IR is a consequence of an increased 

presence of circulating fatty acids and ketone bodies that 

lead to defects in glucose utilization and an ever-

increasing insensitivity to insulin. Th e biochemical 

principles of this model are still valid and useful today.

Further clarifi cation throughout the 1960s and 1970s 

came from endocrine diseases that were accompanied 

by IR. Th e explanatory power of hormones is 

particularly obvious in diseases with an overproduction 

of a distinct glucogenic hormone such as in Cushing’s 

syndrome (cortisol), acromegaly (growth hormone), 

pheochromocytoma (catechol amines), glucagonoma, 

thyro tocicosis (thyroxine, triiodothyronine), and insulinoma 

(IR as a consequence of insulin receptor desensitization) 

[5]. Since these diseases were accompanied by IR, the res-

pective hormones became the focus of IR research (called 

the insulin antagonists; not to speak of antibodies to 

insulin or insulin receptor). However, in the diseases 

mentioned in Table 1, IR was not accompanied by 

enormous serum levels of hormones as in these endo-

crine tumors.

Physiological conditions and disease states with up-

regulated stress hormones were found to be accompanied 

by IR, such as in psychological stress, psychiatric disease, 

starvation, fasting, and others (Table 1). Th e activation of 

stress axes is very closely related to the abovementioned 

cluster of mental activation. For example, an overactive 

stress system has been described in diff erent forms of IR 

[26,27]. Stress system activation is an explanatory model 

for IR, still in vogue [28-33], but in 1993 the mainstream 

of research turned to infl ammation-related IR (discussed 

in the paragraphs following the next paragraph) [34].

In addition, several authors indicated the central role of 

the brain because it dictates nutrient intake and foraging 

behavior. Excess energy intake per se would be an 

important factor for obesity and, thus, a possible cause of 

subsequently developing IR. Th is has been demonstrated 

in humans to play a role in congenital severe obesity with 

congenital leptin defi ciency [35], or a mutation in the 

melanocortin receptor type 4 [36]. Th ere is a highly 

delicate system of hypothalamic regulation of satiety 

Table 2. Classical signs of insulin resistance until 1995 

[5,28,121,122]

Structure, organ Observed change

Insulin receptor Inhibited

Insulin receptor signaling cascade Inhibited

Muscle

 Glycogen synthase Inhibited

 Hexokinase II Inhibited

 Pyruvate dehydrogenase Inhibited

Liver

 Hepatic glucose production  Stimulated

 (gluconeogenesis, glycogenolysis)

 Insulin clearance Stimulated

Adipose tissue

 Free fatty acid mobilization Stimulated

Signs in circulating blood

 Hyperglycemia Yes

 Hyperlipidemiaa Yes

 Glucagon Increased

aTriglyceride–free fatty acid–very low density lipoprotein–triglyceride cycle. 
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versus food intake, which is infl uenced by distinct path-

ways within the brain and from the periphery [31,37]. 

Close relationships exist with psychological components 

comprising mood disturbances, altered reward percep-

tion and motivation, or addictive behavior [38]. Th e 

interested reader is referred to comprehensive reviews of 

the subject [31,38,39].

Nowadays, infl ammation-mediated IR is another im-

por tant explanatory platform of IR in adipocytes, myo-

cytes, and hepatocytes [7,34,40,41]. Disruption of insulin 

signaling at the level of insulin receptor substrate-1 and 

insulin receptor substrate-2 and further downstream by 

tumor necrosis factor (TNF) signaling, toll-like receptor 

signaling, nuclear factor-κB and inhibitor of nuclear 

factor-κB, and FoxO1 activation are key elements of 

infl ammation-related IR [6,40,42]. Crucial cytokines in 

IR are TNF, interleukin (IL)-1β, IL-6, IL-18, and 

adipokines. Although the concept behind infl ammation-

related IR is convincing, neutralization of TNF or IL-1β 

had no infl uence on IR in obese patients or T2D patients 

[40]. Th is might depend on the redundancy of cytokine 

pathways because, typically, only one cytokine is 

neutralized while many cytokines act in parallel. Th is 

might be overcome by a broader inhibition of pro-

infl ammatory signaling pathways, which has been shown 

for salsalate therapy that reduced IR in patients with T2D 

[43]. In patients with CIDs, TNF and IL-6 neutralizing 

strategies reduced IR [20,44,45]. Until now it is not clear 

why the neutralizing strategies perfectly improve insulin 

sensitivity in CIDs but not in patients without CIDs. Th is 

discrepancy will be discussed in a model of IR that 

integrates the fi ndings of CID patients (see below).

In addition to the cytokine-centered theory of IR, a 

relatively new aspect is nutrient-induced infl ammation 

that leads to endoplasmic reticulum stress, activation of 

jun-N-terminal kinase, and inhibition of insulin receptor 

substrate-1 and AKT (v-akt murine thymoma viral onco-

gene homolog  1) and, thus, IR in the liver and adipose 

tissue [6]. In this model of metafl ammation (metabolic 

infl ammation), free fatty acids can activate toll-like 

receptors, and free fatty acids and glucose undergoing 

oxidation in mitochondria stimulate free radical 

production, both of which inhibit insulin signaling [6,46].

Th e theory describes that nutrient overload in our 

modern society of affl  uence gradually increases the 

involvement of immune system pathways. Th is leads to 

ongoing infl ammation, mainly in fat tissue as 

substantiated by leukocyte infi ltration (the macrophage is 

the big player). In consequence, involvement of these 

infl ammatory pathways intensifi es the inhibition of 

metabolic pathways [6]. In addition, in patients with 

obesity, changes of the gut microbiota were observed, 

which in itself can be an infl ammatory factor that 

contributes to IR [47-49].

Table 3. Methods to measure insulin resistance

Technique Notes Reference

Reference methods

 Hyperinsulinemic euglycemic clamp Gold standard, highly invasive [114]

 Frequently sampled intravenous glucose tolerance test Silver standard, invasive [132]

Oral glucose tolerance test

 Insulin sensitivity glycemic index = 1 + 2 /(INSp × GLYp) Most commonly used, little invasive [133]

 Whole body insulin sensitivity Little invasive [133]

 Muscle IS = (Δglucose / Δtime) / mean plasma insulina Little invasive [134]

 Hepatic IS = glucose
0–30 minutes

[AUC] × insulin
0–30 minutes

[AUC]b Little invasive [134]

Fasting simple indices

 Homeostasis model assessment insulin resistance (HOMA-IR) Non-invasive [133]

 Newer version of the HOMA-IR (HOMA2-S) Non-invasive [133]

 FGIR = fasting glucose (mg/dl) / fasting insulin (mU/l) Non-invasive [133]

 Quicki = 1 / (log fasting insulin (mU/l) + log fasting glucose (mg/dl)) Non-invasive [133]

Biochemical markers of insulin resistance

 Sex hormone binding globulin Non-invasive [133]

 Insulin-like growth factor binding protein 1 Non-invasive [133]

 Other markers: YKL-40, alpha-hydroxybutyrate, soluble CD36, leptin,  Non-invasive [135]

 resistin, interleukin-18, retinol binding protein-4, and chemerin

AUC, area under the curve; GLYp, area under glucose curve; INSp, area under the insulin curve; IS, insulin sensitivity. aThe rate of decay of plasma glucose concentration 
from its peak value to its nadir (Δglucose / Δtime) during the oral glucose tolerance test. bThe product of the total AUC for glucose and insulin during the fi rst 30 
minutes of the oral glucose tolerance test.
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In this short pathophysiology collection of IR, we 

recog nize again the two clusters linked to IR: infl am-

mation with an activated immune/repair system; and 

increased mental activation (mood, food intake, stress 

and stress axes). However, the appearance of the two 

clusters is not yet explained by the interplay of the 

abovementioned pathophysiological elements. Possibly, 

published theories on IR with an evolutionary perspective 

might help to explain the two clusters.

Evolutionary medicine – theories of insulin 

resistance, 1962 to 2014

Th e theories of IR are summarized in Table  4 and are 

shortly recapitulated here. Th e thrifty genotype hypo the-

sis of 1962 states that a gene has been positively selected 

for an exceptionally effi  cient intake and utilization of 

food, which was good for hunter-gatherers in a feast/

famine environment but is not good for modern people 

in a world of plenty. In the original theory, a single gene 

was made responsible for rapid postprandial insulin 

release that supported quick storage of energy-rich 

substrates (called the quick insulin trigger) [50,51]. While 

the original theory focused on the quick insulin trigger, 

an alternative model focused on possible genes involved 

in IR [52]. Today, we know that obesity and IR are based 

on a polygenic background with many single nucleotide 

polymorphisms with small eff ect sizes. Selection on such 

mutations would probably be very weak because the 

individual advantages they would confer would be very 

small. Th e theory has been criticized due to modest 

support by genetic analyses; it has been even rejected, 

but it is still in use and has been adapted by researchers 

in the fi eld of eating disorders [53].

Another theory of starvation-induced IR proposes that 

IR of the muscle during fasting is a positively selected 

program to maintain high circulating glucose levels in 

order to protect muscle from proteolysis during star-

vation [52,54]. In addition, during starvation, lipolysis is 

switched on, leading to provision of free fatty acids and 

then ketone bodies that can be used by the brain. Both 

mechanisms spare glucose and glucogenic amino acids in 

the muscle. IR in the context of starvation is of a special 

form because insulin levels are very low, no infl ammation 

accompanies starvation, and counterregulatory hor-

mones such as glucagon and cortisol are continuously 

upregulated. Th is situation does not apply to IR observed 

in CIDs and obesity because hyperinsulinemia and 

infl ammation are a hallmark.

Another important theory of IR is the thrifty phenotype 

hypothesis [55,56]. Th is model is based on the important 

observations that underweight babies more often develop 

IR and obesity compared with normal weight children. In 

this theory, intrauterine malnutrition and other fetal 

constraints induce insulin defi ciency (lack of the 

growth-promoting activities of insulin) and a postnatal 

state of regulatory IR, which leads to rapid postnatal 

increase of adipose tissue that remains stable throughout 

life (accompanied by cardiovascular disease in the older 

person, and so forth) [57]. In many studies all over the 

world, the epidemio logical fi ndings were very supportive 

of the model [55]. Th e theory proposes that environ-

mental factors are the dominant cause of obesity, and 

that epigenetic intrauterine programming plays the 

critical role [58,59]. Th is theory has been refi ned in the 

predictive adaptive response model. In this supplement 

to the original theory, the relative diff erence in nutrition 

between prenatal and postnatal environment, rather than 

an absolute level of nutrition, determines the risk of IR 

[60]. Both thrifty phenotype theories are accepted in IR 

research because they have been confi rmed in many 

studies in humans and animals. Th ese days, it is amazing 

that a nongenetic theory has received so much support 

and attention.

Based on the thrifty genotype hypothesis, IR and 

immune activation were recognized as an adaptive 

positively selected program to combat infections (the 

fi ght infections theory of IR). Th e activation of the 

immune system during infectious disease and infl am-

mation induces IR, which leads to redirection of glucose 

to the activated immune system [61]. In a modern form, 

this was integrated into the concept of immune cell 

activation by pathogen-sensing and nutrient-sensing 

pathways (with cytokines, toll-like receptors, jun-N-

terminal kinase, and so forth) [62]. Here, even nutrients 

can induce an infl am matory state that can support IR, 

which is probably a dilemma after exaggerated food 

intake when nutrients cannot be adequately stored in fat 

tissue and elsewhere (nutrient overfl ow problem).

Similarly based on the thrifty genotype theory is the 

breakdown of robustness theory, which states that a 

robust glucose control system developed during evolu-

tion. Th e breakdown of this robust glucose control 

system induces positive disease-stabilizing feedback 

loops leading to IR. Th e critical determinant of the 

breakdown is TNF [63]. Th is theory incorporates many 

accepted aspects but TNF is not the sole patho physio-

logical factor.

With the discovery of leptin, a negative feedback loop 

between adipose tissue and food intake was discovered. 

While in earlier times many argued that energy 

homeostasis operates primarily to defend against weight 

loss, the discovery of the leptin negative feedback loop 

speaks for homeostatic mechanisms that inhibit un-

controlled weight gain. Th e central resistance model 

states that central hypothalamic pathways are defective 

(resistant to leptin and others such as insulin). Th is leads 

to increased food intake and the resulting obesity induces 

IR [64]. Th is theory has much value because it added the 
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central regulation of food intake to the peripheral 

pathophysiologic pathways.

Finally, the good calories–bad calories theory explains 

that our present food is markedly diff erent from paleo-

lithic food. Particularly, high energy-dense carbohydrates 

are consumed too often, which induces inadequate 

hyperinsulinemia [65]. Long-term hyperinsulinemia is 

the platform for obesity and disease sequelae. Others 

hypothesized that disparities between paleolithic and 

contemporary food might be important factors under-

lying the etiology of common western diseases [66]. 

Typically the type of ingested lipids and the relative 

amount of carbohydrates/lipids versus proteins is a 

problem.

In conclusion, the theories already indicate that IR can be 

an important aspect to support the brain and the activated 

immune system. As such, IR can be seen as a positively 

selected program to support the brain or immune system. 

In the following sections, this concept is further developed 

by including aspects of energy regulation.

Energetic benefi ts of insulin resistance for 

non-insulin-dependent tissue

At this point, I recapitulate that IR increases circulating 

glucose and free fatty acids that are not taken up in 

adipose tissue, liver, and muscle, and are now freely 

available to all non-insulin-dependent tissues. Th e two 

main profi teers of hyperglycemia are the central nervous 

system and the immune system because either glucose, 

free fatty acids (not the brain), or ketone bodies are 

energetic substrates. Both of these organs do not become 

insulin resistant. In contrast, the immune system profi ts 

from insulin because it is an important growth factor for 

leukocytes and, with the help of insulin, major glucose 

transporters like glucose transporter-3 and glucose 

transporter-4 are upregulated on all leukocyte sub popu-

lations [67]. In answering the question of whether, for 

example, hepatic glucose production really provides 

higher levels of circulating energy, the following simple 

calculations are presented for glucose (similar calcula-

tions can be done for free fatty acids).

One important factor of IR is overproduction of 

hepatic glucose [68]. In normal subjects, hepatic glucose 

production after an overnight fast is approximately 

2.0 mg/kg per minute. Under a situation involving IR, for 

example in T2D patients, insulin is 2.5-fold increased and 

the rate of fasting glucose production can increase to 

2.5 mg/kg/minute [68]. After an overnight fast during an 

observation period of 12  hours, the liver of a normal 

person of 80  kg bodyweight produces 115  g glucose. 

Using the above given numbers, a person with IR 

produces 144 g glucose, leading to an increase of 29 g in 

12  hours. An increase of 2  ×  29  g  = 58  g glucose in 

24  hours corresponds to 974  kJ in 24  hours, which is a 

pretty high number in the light of the normal metabolic 

rate of 10,000 kJ/day of an 80 kg person (sedentary way of 

life). Indeed, 974 kJ represents approximately 39% of the 

total energy need of the normally active central nervous 

system, or it represents 61% of the energy requirements 

of all resting immune cells (Table 5). IR is thus a perfect 

Table 4. Characteristics of theories on insulin resistance as observed from an evolutionary medicine standpoint

Theory of insulin resistance Year Reference

Thrifty genotype hypothesis: quick hyperinsulinemia after food intake to store energy in fat tissue and elsewhere  1962, 1999 [50,51]

(quick insulin trigger)

(Not so) Thrifty genotype hypothesis: starvation induces a special form of IR in order to conserve nitrogen  1979 [54]

(= amino acids from muscle and elsewhere)a

Thrifty phenotype hypothesis: intrauterine constraints induces IR and insulin defi ciency, which allows the organism to survive  1992, 2001 [55,56]

long enough to reproduce in a nutritionally deprived environment but which leads to obesity in a world of plenty; maternal 

constraints support IR (small mother, fi rst baby, many babies in parallel, maternal undernutrition, and similar)

Based on the thrifty genotype hypothesis: an insulin resistance genotype and a cytokine genotype exist (much IR, high  1999 [61]

cytokine response); IR is helpful for infections

Refi ned thrifty phenotype theory: predictive adaptive response model: the relative diff erence in nutrition between the prenatal  2004 [60]

and postnatal environment, rather than an absolute level of nutrition, determines the risk of IR

Central resistance model: there exists a homeostatic regulation of weight gain versus weight loss but defects in the weight  2004 [64]

loss system leads to obesity (for example, insulin and leptin signaling, SOCS3, PTB-1B)

Thrifty genotype plus breakdown of robustness: the basis is the thrifty genotype model; a robust glucose control system  2004 [63]

evolved during evolution, the breakdown of which induces positive disease-stabilizing feedback loops (TNF)

Thrifty genotype: integration of cellular pathogen-sensing and nutrient-sensing pathways (cytokines, TLRs, JNK, Ikkβ, PKC, ER stress) 2006 [62]

Good calories–bad calories hypothesis: wrong nutrients, particularly carbohydrates, lead to obesity and IR; a paleolithic diet  2010, 2012 [65,66]

has quite diff erent qualities that prevents obesity and western diseases

ER, endoplasmic reticulum; Ikkβ, inhibitor of nuclear factor-κB kinase β; IR, insulin resistance; JNK, jun-N-terminal kinase; PKC, protein kinase C; PTB-1B, protein tyrosine 
phosphatase 1B; SOCS3, suppressor of cytokine signaling 3; TLR, toll-like receptor; TNF, tumor necrosis factor. aThis is a special form of IR without hyperinsulinemia 
on the basis of a strong response of counterregulatory hormones. It is questionable to call it IR because of missing hyperinsulinemia and missing infl ammation. In 
addition, activity of the sympathetic nervous system is low while activity of the hypothalamic–pituitary–adrenal axis is high in the typical nadir.
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way to support the activity of the central nervous system, 

the immune system, and/or other insulin-independent 

tissues (for example, the heart; Table 5).

In conclusion, while IR is most often regarded as a 

pathological state to be treated, these numbers and the 

fact that IR is linked to so many diseases and disease 

states are indicative of a benefi cial role of IR. While the 

value of IR can be estimated from the abovementioned 

numbers, the generation of the two disease clusters is not 

yet clear.

The selfi sh brain and the selfi sh immune system 

independently demand energy

Th is section demonstrates aspects of hypothetical 

character, and the reader is advised to critically judge the 

theoretical model. Th e basal metabolic rate of the entire 

body is determined when the following conditions are 

met [69]: awake, lying, after overnight fast, thermoneutral 

(no heat production due to low/high temperature), and 

no emotional stress [69]. Under these conditions, a 

person weighing 80  kg and 1.80  m in height needs 

approximately 10,000 kJ/day (Table 5).

Th e so-called minimal metabolic rate is lower than the 

basal metabolic rate because 15% of energy is spared 

during sleep, so that a 24-hour sleeping person weighing 

80  kg and 1.80  m in height needs 8,500  kJ/day. Th is 

amount of energy is not up for negotiation between the 

diff erent organs. Th e delta value between this last 

number and the maximum of daily energy uptake in the 

gut (20,000 kJ/day; see Table 5) is 11,500 kJ/day. In this 

example, 11,500  kJ/day is the controllable amount of 

energy (CAEN) because allocation of the CAEN to 

diff erent organs is controlled by the interplay of these 

organs. Th is amount of energy is available for negotiation. 

Th e question is which organs are dominant in regulating 

the CAEN. Dominance can be judged when looking at 

Table 5, which shows the main users of energy, but can 

also be derived from simple theoretical considerations.

For example, if a paleolithic hunter experiences tissue 

trauma with infection, the immune/repair system 

becomes strongly activated. In this life-threatening 

situation, regulation of CAEN allocation to the immune/

repair system must be independent of other organs and 

immediate (hierarchically, the highest level of control to 

survive). In this situation, circulating cytokines and 

activated sensory nerve fi bers are responsible for the 

immediate reallocation of the CAEN to the activated 

immune system that increases energy consumption 

(Table  5) [70]. Th is reaction is called the energy appeal 

reaction [70].

Similarly, if the brain is active during hard forest work 

over 6  hours, for example, then the skeletal muscles, 

heart, lungs/diaphragm, and liver are also active, but 

most other organs are at minimal metabolic levels. Th is is 

particularly true for the gastrointestinal tract and the 

immune system. In this example of 6-hour forest work, a 

person weighing 80 kg and 1.80 m in height would need 

18,500  kJ for the entire day (calculated using data from 

[71]). Th e brain controls the additional CAEN of 

10,000 kJ when there is need for forest work. Likewise, if 

a paleolithic hunter needs to escape from a severe 

dangerous threat, the brain must control the CAEN. In 

such a life-threatening situation, the control of the CAEN 

by the brain must be independent of other organs (again, 

the highest level of control to survive).

With trauma/infection or fi ght/fl ight response, the 

activity of most organs depends on either the immune/

repair system or the central nervous system, respectively. 

We recently delineated that allocation of CAEN to the 

brain and muscles happens mainly during daytime, while 

allocation of CAEN to the immune/repair systems 

happens at night [70]. Th is circadian allocation of energy-

rich substrates is another clear indication of tight energy 

regulation. From these theoretical considerations, it 

becomes clear that either the immune/repair system or 

the central nervous system is a dominant regulator of the 

CAEN.

Coming back to the Introduction, with this model the 

two clusters of clinical entities linked to IR become 

understandable in terms of energy regulation. One 

recognizes two independent organs – the selfi sh immune 

system, and the selfi sh brain [37,72]  – related to the 

abovementioned clusters of infl ammation with an 

Table 5. Energy expenditure of systems and organs under 

sedentary conditions (approximately 10,000 kJ/day)a 

[69,70,136-139]

 Energy expenditure

System/organ per day (kJ/day)

Muscle at restb 2,500

Central nervous system (brain and spinal cord) 2,500

Immune system in a quiescent statec 1.600

Liverd (including immune cell activity) 1,600

Heartb 1,200

Gastrointestinal tract (including gut immune system,  620

without liver, kidney, spleen)d

Kidneys 600

Spleen (erythrocytes plus leukocytes; 90% anaerobic) 480

Lungsd (including lung immune system) 400

Skind (including skin immune system) 100

a10,000 kJ = 2,388 kcal. bActivated muscle has a much higher metabolic rate: 
for example, a Tour de France bicyclist needs approximately 30,000 kJ/day, 
which is 20,000 kJ more than under sedentary conditions. The 20,000 kJ are 
used predominantly by the muscles and also the heart. At the upper limit of 
gastrointestinal resorption, the total body daily uptake (absorptive capacity in 
the gut) is 20,000 kJ/day. cModerate activation of the immune system increases 
daily energy needs to approximately 2,100 kJ/day, and strong activation 
increases the daily need to 3,000 kJ/day. dEnergy need is diffi  cult to estimate 
independent of the immune system in some organs.
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activated immune/repair system and of increased mental 

activation.

With the chronic infl ammatory and chronic mental 

diseases that induce IR (listed in Table  1), the question 

arises of whether or not brain-supporting and immune 

system-supporting IR has been positively selected for 

acute disease or chronic disease. Such a distinction is not 

included in the available theories of IR, but it might be 

helpful to understand the role of IR in general.

A diff erence between acute and chronic disease

While an acute response is often adaptive and physio-

logical to correct alterations of homeostasis, a chronic 

disease process is often accompanied by the wrong 

program [70,73]. Looking at simple readout parameters, 

this can be demonstrated for immune/repair system 

activation and mental activation.

Th e acute activation of the immune/repair system is 

outstandingly important to fi ght acute infections and 

trauma. However, longstanding infl ammation in CIDs 

leads to severe disease sequelae as summarized recently 

[70,73]. Th e following disease sequelae are directly linked 

to CIDs: sickness behavior, anorexia, malnutrition, 

muscle wasting–cachexia, cachectic obesity, IR with 

hyper insulinemia, dyslipidemia, increase of adipose 

tissue near infl amed tissue, alterations of steroid hor-

mone axes, elevated sympathetic tone and local 

sympathetic nerve fi ber loss, decreased parasympathetic 

tone, hypertension, infl ammation-related anemia, and 

osteopenia [70,73]. It was suggested that these sequelae 

of CIDs are a consequence of a high energy demand of 

the activated immune/repair system accompanied by 

water retention [70,73]. Acute activation of the immune/

repair system can be very helpful, but chronic activation 

is a harmful process that worsens the situation in an 

aff ected patient.

Considering mental activation, we can also separate 

acute versus chronic. In the acute situation of emergency 

for a loved one, family members and hospital staff  show 

strong mental activation that can lead to a higher state of 

activity, a better readiness to take action, but also poor 

sleep and symptoms of anxiety [74,75]. Similarly, 

student’s examination stress can lead to a higher state of 

activity but also to poor sleep and acute increase in 

anxiety scores [76,77]. Acute examination stress 

increased intake of highly palatable food in an un-

proportional manner [78]. In these acute situations, 

mental activation, poor sleep, and increase in food intake 

are important to overcome the challenging situation.

However, long-term caregivers of, for example, 

Alzheimer disease patients are more often obese than 

noncaregivers, demonstrate alterations typical of the 

metabolic syndrome, show a higher risk to develop major 

depression, and have a long-term increase in 

proinfl am matory markers [79-84]. Similarly, chronically 

stressed students in a highly competitive university 

environment showed an increased risk of obesity [14]. A 

dose–response relationship was found between chronic 

work stress and risk of general and central obesity that 

was largely independent of covariates such as age, sex, 

and social position [11], supported in other large studies 

[12,13]. Moreover, chronic job stress was related to an 

increased risk of the metabolic syndrome and even T2D 

[85-87]. Chronically poor sleep is related to metabolic 

risk factors, obesity, and infl ammation [88].

Th is small collection demonstrates that activation of 

the immune/repair and central nervous systems are 

successful in acute emergency, but dangerous when 

applied chronically, leading to typical signs of obesity, 

metabolic derangement with IR, chronic infl ammation, 

and increased risk for cardio vascular events [89]. Th e 

question is why there is such a clear distinction between 

acute and chronic, which determines the full picture of 

the metabolic syndrome and IR.

Evolutionary medicine – acute physiological 

response versus chronic disease

Earlier, it was demonstrated that a highly activated 

immune/repair system cannot be switched on for a long 

time because this would be very energy consuming [73]. 

A highly activated immune system is accompanied by 

sickness behavior and anorexia, which prevents adequate 

food intake and necessitates life on stored reserves 

(infl ammation-induced anorexia). Under systemic in-

fl am matory conditions, breaking down all reserves takes 

19 to 43  days [73]. A highly activated immune/repair 

system can need huge amounts of energy, which is 

exemplifi ed in the case of extensive burn wounds (up to 

20,000  kJ/day) [73]. Although this aspect demonstrates 

the extreme of the spectrum, it indicates that energy 

consumption is a critical factor during evolution.

I hypothesize that energy consumption and energy 

protection are the most critical determinants in 

evolution, to undergo either negative selection or positive 

selection, respectively. If alterations of homeostasis lead 

to marked energy consumption, the situation cannot be 

chronic – it must be acute. Since the total consumption 

time ranges between 19 and 43  days [73], an acute 

energy-consuming change of homeostasis must be 

started and terminated in this time frame. A very good 

example for this time window is the germinal center 

reaction of B-lymphocyte expansion and contraction that 

happens within approximately 21 to 28  days [90]. Most 

acute disease states are terminated within this time 

frame, such as infectious diseases, wound healing, and 

repair, but also strong mental activation in stressful 

situations must be termi nated because they are energy 

consuming, exemplifi ed in short-term stress [78]. During 
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evolution, respective homeostatic networks were 

positively selected for short-lived, acute, energy-

consuming responses but not for longstanding polygenic 

CIDs or chronic mental illness. Th ese chronic situations 

generated a huge negative selection pressure.

In contrast, if mutations were helpful to protect energy 

reserves, they were posi tively selected during evolution. 

Th is is true for memory responses because immediate 

reaction of an educated system can spare energy reserves. 

Th is is exemplifi ed by the immune memory that leads to 

shorter, more eff ective and, fi nally, less energy-consuming 

reactions towards microbes. Importantly, acquisition of 

immune memory during the primary contact must fi t 

into the above specifi ed time frame of 19 to 43 days (and 

this happens as exemplifi ed by the germinal center 

reaction in secondary lymphoid organs). In this context, 

tolerance versus harmless foreign antigens of microbes 

on body surfaces (see gut, skin, respiratory tract, 

urogenital tract) or harmless autoantigens is a memory 

function that spares energy reserves. Sometimes 

microbes such as Mycobacterium tuberculosis, Myco-

bacterium leprae, and viruses enable or mimic tolerant 

immune responses leading to longstanding infection, but 

fi nally leading to death due to emaciation.

Similarly, neuronal memory can largely decrease time 

to accomplish successful foraging in the wild [91]. 

Neuronal memory systems are tuned to ancestral 

priorities in the context of foraging and other paleolithic 

tasks [92]. Additionally, tool-making, invention of 

language and writing, and storage of data on computer 

hard disks protects time and thus energy.

Another example of positively selected gene variants is 

observed for food ingestion and fat storage (not IR!), both 

of which are important in determining the above-

mentioned consumption time. Indeed, female Australo-

pithecus afarensis had a consumption time of approxi-

mately 19 days, while modern female Homo sapiens can 

rely on 43 days [73]. Particularly, fat storage has markedly 

increased over the last 3 to 4  million years of human 

evolution. Not surprisingly, the latest metaanalysis of 

genome-wide association studies of obesity and the 

metabolic syndrome (not IR) found polymorphisms in 

genes relevant for food intake such as FTO (fat mass and 

obesity related), MC4R (melanocortin receptor type  4), 

POMC (proopiomelanocortin, the precursor of melano-

cortin), and genes relevant for fat storage such as the 

insulin-stimulating GIPR (gastric inhibitory polypeptide 

receptor) [93].

Another important indication for positive selection of 

fat storage networks (not IR) is given by the fact that the 

number of adipocytes in humans is determined before 

puberty [57]. After puberty, the number of adipocytes 

stays constant with an annual exchange rate of 10% [57]. 

If spontaneous mutations lead to a phenomenon relevant 

before reproduction time, it will be easily transferred to 

off spring when it is an advantageous trait. Since the 

phenomenon still exists in modern children [57], we 

expect that fat storage was an important factor during 

evolution. Similarly, humans can deposit large amounts 

of fat in utero and are consequently one of the fattest 

species at birth [94]. In addition, newborn humans 

devote roughly 70% of growth expenditure to fat 

deposition during early postnatal months, which reduces 

the risk of energy stress during infections [94]. If the 

newborns are not able to store large amounts of fat tissue 

in utero, or if malnutrition is a problem in fetal life 

(thrifty phenotype model, see above; Table 4), a postnatal 

program seems to be switched on that supports obesity 

during childhood and adolescence [55,56]. Again this is 

an indication that important positively selected gene 

variants exist that serve storage of energy.

In conclusion, networks are positively selected if they 

serve acute, highly energy-consuming situations, which 

are terminated within 3 to 6 weeks. We perceive a 

chronic disease when it lasts for longer than 6 weeks, as 

used in classifi cation criteria in RA and juvenile idio-

pathic arthritis [95]. In addition, gene variants are 

positively selected if they protect energy stores, which is 

relevant during the entire life (beyond weeks 3 to 6). 

Networks that lead to IR serve the acute activation of the 

selfi sh immune system or the selfi sh brain, but do not 

belong to networks that protect energy stores (Figure 1). 

In contrast, IR leads to loss of energy-rich substrates 

because it is a catabolic process (energy-rich fuels are 

consumed by non-insulin-dependent organs or are 

simply excreted) (Figure 1). If the hypothesis of the acute 

IR program is correct, then chronic IR in chronic 

infl ammation, in CIDs, and in chronic mental activation 

or mental disease is a misguided acute program. In 

contrast to IR, food intake and storage of energy-rich 

substrates in adipose tissue per se is not a misguided 

program. In other words, obesity is not dangerous and 

obesity is not a disease [96]. Yet obesity becomes a 

problem if additional factors are switched on that usually 

serve acute energy-consuming situations (mental 

activation or infl ammation). Per Björntorp once noticed 

that ‘some disease-generating factors, in addition to the 

basic condition of central obesity, is required for 

associated diseases to become manifest’ [96].

The new model of insulin resistance

With all this information, one can generate a new model 

of IR that builds upon the existing theories. Th e new 

model includes four new aspects: it respects much more 

the immune/repair system, whose energy requirements 

are enormous (Table  5) [70]; it juxtaposes the selfi sh 

brain and the selfi sh immune system on a similar hier-

archical level in terms of energy demand and 
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requirements (Table  5); it respects that energy require-

ments convey an evolutionary pressure (highly energy-

consuming states are acute (negative selection pressure), 

energy storage is benefi cial (positive selection pressure)); 

and it accepts that either immune system activation or 

mental activation are equally important in inducing IR. 

On the basis of these elements, a new model of IR is 

presented in Figure  1. Th is model states that IR is an 

acute catabolic program to serve the selfi sh immune 

system or the selfi sh brain, positively selected for 

infl ammation with an activated immune/repair system 

and for increased mental activation.

Several testable hypotheses can be generated from the 

new model, as follows. Obesity is only a problem if acute 

energy-consuming programs are switched on (either 

infl ammation or mental activation cause the problem). 

Immunological tolerance should support the storage 

function of fat tissue and muscle. Nutrient-induced 

infl ammation is only a problem if energy-rich fuels are 

not properly stored (there is an individual storage 

threshold). Intrauterine constraints (elements of the 

thrifty phenotype model) should set the thresholds for 

acute activation programs. While there is a clear link 

between fat tissue and brain (leptin), there should be 

similar pathways between the liver/brain and the muscle/

brain that regulate food intake – concerning the muscle/

brain pair, a recent paper found important links through 

muscle-derived IL-6 [97]. In CIDs, the selfi shness of the 

immune system should lead to an inhibition of brain-

dependent regulation of energy allocation. Likewise, in 

mental illness or chronic psychological stress, the 

selfi shness of the brain should lead to inhibition of the 

immune system-dependent regulation of energy allo-

cation. In CIDs and mental illness/stress, the two systems 

must inhibit each other.

The drivers of insulin resistance in chronic 

infl ammatory and mental diseases

A seminal study demonstrated the interrelation between 

the dose of subcutaneously injected recombinant human 

IL-6, serum levels of IL-6, and the increase of energy 

expenditure in healthy volunteers [98]. Injection of 0.1 μg 

recombinant human IL-6/kg bodyweight increased 

serum levels of IL-6 to approximately 10 to 15  pg/ml, 

1.0 μg led to 45 pg/ml, 3.0 μg stimulated a serum level of 

250 pg/ml, and 10 μg recombinant human IL-6/kg body-

weight was accompanied by an IL-6 serum concentration 

of more than 1,000  pg/ml. In parallel, the maximal 

increase of metabolic rate in percent of basal metabolic 

rate was 4%, 7.5%, 18%, and 25%, respectively [98]. Th is 

means that a visible infl uence on energy regulation was 

observed at a serum level of 10 to 15 pg/ml, but the eff ect 

was small in these healthy volunteers. In contrast, serum 

levels of 45 pg/ml were related to an increase in metabolic 

rate of 7.5%, which would amount to approximately 

750  kJ/day in a normal-sized healthy subject (basal 

metabolic rate: 10,000 kJ/day). An increase of serum IL-6 

from 1 to 2 pg/ml, as in healthy subjects [99], to 45 pg/ml 

thus induces a marked energy expenditure program.

Under consideration of the new model in Figure 1, we 

immediately recognize the problem of continuous 

infl ammation in CIDs. CIDs such as RA are accompanied 

by markedly elevated serum levels of IL-6 ranging from 

40.0  pg/ml before anti-TNF therapy to 8.0  pg/ml after 

anti-TNF therapy [100]. Th e levels are thus much higher 

as compared with healthy subjects (1 to 2  pg/ml [99]). 

Untreated patients with RA should increase daily energy 

expenditure by 750  kJ/day (basal metabolic rate: 

10,000  kJ/day). Th is value of 750  kJ/day is remarkably 

similar to the number of 974 kJ/day obtained by hepatic IR 

as calculated above. Since we expect that several cytokines 

like TNF, IL-6, interferon gamma, interferon alpha, and 

others can drive a similar energy reallocation program, 

elevation of systemic cytokines explains why patients with 

CIDs do not need any other factor to provoke IR. Th ese 

CID patients do not need the activation of the brain and 

thus activation of stress axes to induce IR. Th e brain is 

silenced in CIDs (sickness behavior). IR can be stimulated 

by a direct infl uence of cytokines on hepato cytes, adipo-

cytes, and myocytes. We now understand why cytokine-

neutralizing therapies work perfectly well in RA – because 

the key IR factor is removed. When cytokine-neutralizing 

strate gies do not work in obese or T2D people, other 

parallel factors must play an enormous role.

Th e infl ammatory load is remarkably diff erent in the 

situation of chronic mental illness or psychological stress 

where mild peripheral infl ammation probably plays a 

small supportive role. When one compares serum levels 

of IL-6 as measured with the identical quantitative high-

sensitivity enzyme-linked immunosorbent assay tech-

nique, healthy subjects range between 1 and 2 pg/ml [99], 

caregivers show a mean value of 5.5  pg/ml [101], and 

subjects who report a high level of perceived hopelessness 

show 3.0  pg/ml [102]. Th ese levels correspond to mild 

activation of the immune system, but they would not lead 

to an energy reallocation program [98]. Th us, in mental 

activation, stress axes must play the major role for the 

observed IR (cortisol, adrenaline, growth hormone, 

glucagon). It is expected that neutralization of one cyto-

kine would not change IR in these mentally activated 

people. Furthermore, when cytokine neutralizing strate-

gies do not work in T2D patients, several factors in 

parallel are expected to drive IR. It is interesting that 

salsalate had a positive impact on IR in T2D [43], but this 

type of drug and other nonsteroidal anti-infl ammatory 

drugs can also inhibit mental activation in various 

chronic psychiatric diseases [103-105], which is most 

probably related to reduced activation of stress axes.
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Figure 1. Pathophysiology of insulin resistance according to the new theory. Upper panel: Acute activation programs were positively 

selected for short-lived activation of either the brain or the immune system. Hierarchically, the brain and the immune system are on the same level. 

Activation of the brain mainly stimulates stress axes hormones and activates the sympathetic nervous system (SNS). This is supported by a mild 

infl ammatory process that is paralleled by mental activation (A). Activation of the immune system induces cytokines, chemokines, and danger 

signals. In addition, the infl ammatory process uncouples the locally infl amed area from the control of the brain by cytokine-induced hormone/

neurotransmitter production in the periphery independent of superordinate stress pathways. This leads to hepatic cortisol secretion [140], 

adrenocorticotropic hormone-independent cortisol secretion [141], and production of leukocyte hormones [142] and leukocyte neurotransmitters 

[143]. The activation of the immune system is accompanied by a mild stimulation of the hypothalamic–pituitary–adrenal axis (HPA) axis (albeit 

inadequately low in relation to infl ammation) and a somewhat stronger stimulation of the SNS (B). Despite activation of the SNS, anti-infl ammatory 

neurotransmitters of sympathetic nerve fi bers do not reach the uncoupled infl amed tissue [144]. Infl ammatory and mental activation are often 

accompanied by anorexia and sickness behavior, which aggravates energy shortage. Lower panel: Chronic energy storage and memory programs 

were positively selected. The major storage organs are fat tissue (glycerol, free fatty acids) and muscles (proteins). The liver is more a switchboard to 

interchange and renew energetic substrates. The main storage factor is insulin so that insulin resistance can be seen as a catabolic program induced 

by catabolic pathways (upper panel). Numbers in red give the typical time of energy provision by the respective organ (amino acids from muscle 

are spared from day 3 onwards). Storage is mainly supported by a positively selected program of foot intake/foraging behavior and memory. 

Memory is outstandingly important to spare energy-rich fuels (brain, immune system). Dashed black arrows in the lower panel demonstrate real 

and hypothetical connections between respective organs. Black numbers give a typical fi gure of stored energy in the respective organs. Dashed 

black line between upper and lower boxes separates the programs positively selected for acute (catabolic) versus chronic states (storage and 

memory). CAEN, controllable amount of energy (the energy that is regulated and negotiated between organs); 11βHSD1, 11-beta-hydroxy steroid 

dehydrogenase type 1 [140].
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Conclusions

IR is an unfavorable factor in CIDs because it supports 

the already activated immune system. IR is a direct 

consequence of the proinfl ammatory load. Th us, IR 

should be treated by neutralizing infl ammatory cytokines 

or by inhibiting the immune system with disease-

modifying anti-rheumatic drugs in a more general way 

(like salsalate for T2D). Since IR is a very direct 

consequence of immune system activation, the primary 

goal is anti-infl ammatory treatment. In CIDs, further 

treatment of IR beyond good infl ammatory control is 

expected not to be needed. Since IR is a perfect diag-

nostic marker of an activated energy reallocation 

program (infl ammation and mental activation), measur-

ing IR might be a suitable biomarker to study the control 

of systemic infl ammation in CIDs. Since several 

cytokines induce IR in a redundant manner, IR might be 

a more integral systemic diagnostic marker than C-

reactive protein, the erythrocyte sedimentation rate, or 

single cytokines.

In addition to aspects of IR in CIDs, this review 

demonstrates an extended theory of IR that classifi es IR 

as a benefi cial positively selected program to support 

activation of the immune/repair system and the brain. IR 

makes sense in acute alterations of homeostasis in the 

context of short-lived diseases but is a misguided 

program in long-term infl ammatory and mental 

activation.

Key messages

• IR is a consequence of mental activation (neuro endo-

crine axes) or infl ammation that is a consequence of 

selfi shness of the brain or the immune system.

• IR has been positively selected during evolution for 

short-lived energy-consuming activation of the brain 

or immune system.

• Long-term IR supports mental disease and CIDs 

because energy-rich fuels are provided to these non-

insulin-dependent tissues (continuous activation).

• IR in CIDs is treated by consequent reduction of the 

proinfl ammatory load.

• Treatment of IR in morbid obesity and T2D is more 

complex because both infl ammatory and neuro endo-

crine pathways need to be targeted. Th e pleiotropic 

anti-infl ammatory and central nervous eff ects of 

salsalate constitute the fi rst positive drug therapy of IR 

in T2D.
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