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Introduction
The extracellular matrix (ECM) holds cells and tissues
together, forms organized lattices for cell migration and inter-
action, and creates correct cellular environments. Timely
degradation of the ECM is therefore crucial for controlling
cellular behaviour that is required during the development,
morphogenesis, and tissue remodelling that are associated
with cell differentiation, migration, growth and apoptosis. The
major enzymes that are involved in these processes are the
members of the MMP family, also called matrixins. Recent
studies have also indicated that members of the family called
a disintegrin and metalloproteinase (ADAM) also participate.

The activities of these metalloproteinases must therefore
be precisely controlled under normal physiological condi-
tions. The disruption of this control results in many dis-
eases, such as arthritis, cancer, atherosclerosis, nephritis,

encephalomyelitis, fibrosis, etc., as a consequence of
aberrant turnover of the ECM. While the regulation of the
activities of ADAM metalloproteinases are less well under-
stood at the present time, the activities of MMPs are con-
trolled by endogenous inhibitors called TIMPs that are
synthesized in a variety of tissues and by a plasma protein
α2-macroglobulin and related molecules. α2-Macroglobu-
lin, a protein of 725,000 Da, inhibits MMPs and most
endopeptidases by entrapment of the enzymes, but its
action is thought to be primarily in the fluid phase.

In the tissue, TIMPs are considered to be key inhibitors of
MMPs. They form 1:1 enzyme–inhibitor complexes. Four
TIMPs are currently identified in humans; they are homolo-
gous proteins of 21–29 kDa consisting of two domains,
an N-terminal inhibitory domain and a C-terminal domain.
The C-terminal domain mediates specific interactions with
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some MMP zymogens. In particular, the binding of TIMP-2
to progelatinase A (proMMP-2) through their C-terminal
domains is critical in proMMP-2 activation on the cell
surface by membrane-bound membrane type 1 matrix met-
alloproteinase (MT1-MMP).

TIMP gene expression is regulated by growth factors and
cytokines but their levels of modulation are less than those
of MMPs. Therefore, elevated levels of MMPs over those of
TIMPs are observed in diseases associated with enhanced
proteolysis of the ECM. In addition to the inhibitory actions
on MMPs, TIMPs have a number of other biological func-
tions that are not attributed to MMP inhibition.

In general, TIMPs inhibit only the members of the MMP
family, but recent studies indicate that TIMP-3 is an excep-
tion, since it also inhibits the members of the ADAM family,
including tumour-necrosis-factor(TNF)-α-converting enzyme
(TACE/ADAM-17) and aggrecanase (ADAM with throm-
bospondin type I domain [ADAMTS]-4 and ADAMTS-5).
This suggests a broader importance for TIMPs, particularly
TIMP-3 in regulating extracellular metalloproteinases.
Mutagenesis of TIMPs at specific sites has been shown to
modulate their specificity for MMPs. This suggests that
the expression of TIMP variants directed to specific
metalloproteinases in a targeted tissue may be a potential
therapeutic.

Background: TIMPs and arthritis
Articular cartilage consists of a relatively small number of
cells and an abundant ECM. The major components of the
ECM are collagen fibrils and aggregating proteoglycan
aggrecan. Collagen fibrils, mainly type II collagen together
with minor types IX and XI, form a meshwork that provides
the tensile strength of the tissue. Aggrecan forms a large
aggregated complex interacting with hyaluronan via link
proteins and fills the interstitium of the collagen meshwork.
Aggrecan provides a hydrated gel that gives cartilage its
ability to withstand compression.

In normal cartilage, the turnover and synthesis of ECM
macromolecules is at equilibrium, but in rheumatoid arthri-
tis (RA) and osteoarthritis (OA) the loss of ECM compo-
nents exceeds new synthesis. The primary cause of this
imbalance is elevated activity of the proteinase that
degrades aggrecan and collagen. Aggrecan loss initially
occurs most markedly just beneath the joint surface, which
is followed by mechanical failure of the tissue and colla-
gen degradation [1,2].

MMPs are a family of extracellular zinc metalloendopepti-
dases that function in the turnover of components of the
ECM [3,4]. They are produced by many types of cells, but
their synthesis is regulated by many factors such as
inflammatory cytokines, growth factors, cellular transfor-
mation and physical stimuli [3,4].

Certain members of the MMP family have been consid-
ered to be the major enzymes that participate in the
degradation of aggrecan and collagen in cartilage. Colla-
genases (MMP-1, MMP-8 and MMP-13), gelatinase A
(MMP-2) and gelatinase B (MMP-9), stromelysin 1 (MMP-
3), matrilysin 1 (MMP-7) and membrane-type MT1-MMP
(MMP-14) are found in cartilage, and most are elevated in
the synovium and in the cartilage from patients with RA
and OA [5,6].

All of these MMPs cleave the aggrecan core protein at
various sites, but the critical site is the Asn341–Phe342
bond located in the interglobular domain located between
the two N-terminal globular domains G1 and G2, as this
cleavage can release aggrecan molecules from the carti-
lage [7,8]. The N-terminal fragments with the C-terminal
sequence Val-Asp-Ile-Pro-Glu-Asn341 are found in both
OA and RA cartilage as well as in normal cartilage [9]. On
the contrary, Sandy et al. [10] found that the core protein
was cleaved at the Glu373–Ala374 bond, but not at the
Asn341–Phe342 bond, when bovine cartilage in culture
was stimulated by IL-1. This activity was called ‘aggre-
canase’. The products resulting from this cleavage accu-
mulate in the synovial fluids of patients with OA or
inflammatory joints [11,12].

Two enzymes responsible for this cleavage have been
purified and cloned. They are referred to as aggrecanase
1 and aggrecanase 2 (also ADAMTS-4 and ADAMTS-5,
members of the ADAM protein family, respectively)
[13,14]. Later, it was also found that ADAMTS-1 has
aggrecanase activity [15]. The degradation of type II colla-
gen occurs slower than aggrecan degradations in arthritis.
This is all due to the action of MMPs, and potential
collagenolytic enzymes are MMP-1, MMP-2, MMP-8,
MMP-13 and MMP-14.

MMP activities in the tissue are regulated by endogenous
inhibitor TIMPs [16]. Four TIMPs (TIMP-1, TIMP-2, TIMP-
3, TIMP-4) are found in humans. They are homologous
with each other and consist of two domains, an N-terminal
inhibitory domain of about 125 amino acids and a C-termi-
nal domain of about 65 amino acids. Each domain is stabi-
lized by three conserved disulfide bonds. While the
N-terminal domains of TIMPs (N-TIMPs) are primarily
responsible for the inhibition of MMPs [17], the C-terminal
domains can also influence their binding affinity. The
balance between the metalloproteinases and their
endogenous inhibitors is critical for the appropriate main-
tenance of tissues.

Early work by Dean et al. [18] showed that both MMP
levels and TIMP levels were elevated in OA cartilage com-
pared with unaffected cartilage, but that the total amount
of MMP was slightly higher than that of TIMP, whereas this
balance was reverse in the unaffected cartilage. This
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subtle difference in the ratio of MMPs and TIMPs is con-
sidered to be a cause of the gradual degradation of the
cartilage matrix.

TIMP-1, TIMP-2 and TIMP-3 are present in the joint tissue.
Some elevated levels of TIMP-1 were reported in synovial
fluids [19] and in serum [20,21] of RA patients, but not in
the serum of OA patients [22]. However, the changes of
TIMP-1 levels are not very large compared with the over-
expression of MMPs. Overexpression of TIMP-1 using
systemic adenovirus-based gene delivery reduced
destruction of the joints of TNF-α transgenic mice [23].
On the contrary, the overexpression of TIMP-1 did not
prevent osteochondral injury in the mouse model of colla-
gen-induced arthritis [24]. Since there are differences in
specificity among TIMPs, further investigation is clearly
needed to elucidate the biological and pathological signifi-
cance of TIMPs.

Selectivity of TIMPs
Important features of the interaction of TIMPs with MMPs
are their high binding affinities and differences in speci-
ficity despite their high levels of sequence similarity. TIMP-
1 inhibits most MMPs with Ki levels of 0.1–2.8 nM [25].
TIMP-1 has a higher affinity for full-length MMP-1 [26] as
compared with MMP-1 that lacks the C-terminal hemo-
pexin domain (see the MMP domain structure composition
in the chapter by Murphy et al., this issue). The removal of
the hemopexin domain from MMPs often results in an
approximately 5-fold to 20-fold increase of the Ki value,
indicating that the hemopexin domain assists the interac-
tion of TIMP-1 with MMP. Interestingly, Olson et al. [27]
reported that the C-terminal hemopexin-domain-deleted
MMP-2 does not bind to TIMP-1. However, N-TIMP-1 is an
effective inhibitor of full-length MMP-2 with a Ki value com-
parable with that of MMP-1. Both the hemopexin and the
catalytic domains of MMP-2 are therefore necessary for
binding to TIMP-1, or the catalytic domain of MMP-2 may
have a significantly different structure from that of the cor-
responding domain in the full-length enzyme. TIMP-1,
however, has little inhibitory activity for MT1-MMP [28,29].

TIMP-2, TIMP-3 and TIMP-4 inhibit all MMPs so far tested.
TIMP-2 binds to MMP-2 most tightly. Studies by Hutton et
al. [30] indicated that binding was via a two-step mecha-
nism, with a Ki value of 1 µM for the initial step and an
association rate for the final step of 33 s–1. The overall
dissociation constant was estimated to be 0.6 fM, essen-
tially irreversible. This tight interaction is largely due to the
C-terminal domain of TIMP-2 and the C-terminal hemopexin
domain of MMP-2 [31]. Removal of the hemopexin domain
increases the dissociation constant to 33 pM. TIMP-3
exhibits a relatively low affinity for MMP-3 with Ki = 67 nM,
but the affinities towards MMP-1 and MMP-2 are 1.2 and
4.3 nM, respectively [32]. TIMP-4 has similar inhibition con-
stants to TIMP-2 for MMP-2 and MT1-MMP [29].

In addition to the inhibitory activity of TIMPs, some TIMPs
bind to the zymogen forms of gelatinases. For example,
proMMP-2 binds to TIMP-2, TIMP-3 or TIMP-4 through the
C-terminal domain of each molecule [33–35], and
proMMP-9 (progelatinase B) binds to TIMP-1 and TIMP-3
through C-terminal domain interaction [35,36]. These com-
plexes are potential inhibitors of MMPs. To activate the
proMMP-9 of the proMMP-9–TIMP-1 complex by MMP-3,
TIMP-1 must be saturated by MMP-3 or other MMPs [37].
Alternatively, TIMP-1 needs to be inactivated by proteolysis
[38]. These mechanisms provide precise regulation of
MMP activation and the activities of activated MMPs.

Importance of TIMP-2 for the activation of
proMMP-2 by MT1-MMP
MT1-MMP was cloned and identified as an activator of
proMMP-2 by Sato et al. [39]. This finding is important
since proMMP-2 is not readily activated by other tissue
proteinases. The activation of proMMP-2 by MT1-MMP,
however, requires TIMP-2 [40,41]. In the current model,
proMMP-2 secreted from the cell is recruited to the cell
surface through the interaction of its C-terminal hemopexin
domain and the C-terminal domain of TIMP-2 that is bound
to MT1-MMP on the cell surface. The interaction of
TIMP-2 and MT1-MMP is via the N-terminal domain of
TIMP-2, and therefore the MT1-MMP is inhibited. To acti-
vate the cell surface-bound proMMP-2, another molecule
of MT1-MMP, free of TIMP-2, needs to be present close to
proMMP-2.

The association of two or more molecules of MT1-MMP
was recently shown to be through interactions of their
hemopexin domains [42]. Disruption of this hemopexin
domain association by the overexpression of the
MT1-MMP hemopexin domain together with a transmem-
brane sequence and a cytoplasmic tail prevented
proMMP-2 activation. An excess of TIMP-2 also inhibits
proMMP-2 activation as it inhibits all MT1-MMP. Activation
of MMP-2 and MT1-MMP activity are implicated in tumour
cell invasion and neovascularization of endothelial cells
[43,44]. This system is therefore likely to be involved in
angiogenic processes in rheumatoid synovium.

Itoh et al. [45] have reported that there are two binding
modes of TIMP-2 on the cell surface of concanavalin-A-
treated fibroblasts: about 50% of TIMP-2 binding is
blocked by a peptidyl-hydroxamate inhibitor of MMPs,
whereas the other 50% is not blocked by the inhibitor. The
former interaction is through MT1-MMP as it is inhibited by
a synthetic MMP inhibitor. TIMP-2 bound to the membrane
in a hydroxamate inhibitor-insensitive manner specifically
inhibits MMP-2 activated on the cell surface but does not
inhibit other MMPs, and this inhibitory process is triggered
by interaction of the C-terminal domains of the two mole-
cules. This further emphasizes the intricacy of the roles of
TIMP-2 in proMMP-2 activation and inhibition.

Available online http://arthritis-research.com/content/4/S3/S051
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Unique properties of TIMP-3
Among the four TIMPs, TIMP-3 has a number of unique
properties. TIMP-3 was originally found as a 21-kDa
protein secreted from chick embryonic fibroblasts trans-
formed with Rous sarcoma virus, but it was strongly bound
to the ECM [46]. The protein was later shown to have
MMP inhibitory activity [47]. The ECM binding property is
due to the interaction of the N-terminal domain of TIMP-3
and the polyanionic components [48]. As well as inhibiting
MMPs, TIMP-3 also prevents the shedding of TNF-α
receptor [49], L-selectin [50], IL-6 receptor [51] and
syndican-1 and syndican-4 [52] from the cell surface.

The enzymes responsible for these activities are yet to be
identified, but they are thought to be membrane-bound
metalloproteinases belonging to the ADAM family.
ADAMs are multidomain proteins consisting of a N-termi-
nal propeptide domain, a metalloproteinase domain, a dis-
integrin-like domain, an epidermal growth factor-like
domain, a transmembrane domain and a cytoplasmic
domain. The primary structures of the metalloproteinase
domains of ADAMs and MMPs have little sequence simi-
larity except around the catalytic zinc binding motif
HEXXHXXGXXH [53]. Indeed, evidence for the unique
ability of TIMP-3 to inhibit a member of the ADAM metal-
loproteinases was first reported for TACE (ADAM-17)
[54], and subsequently for ADAMD-10 [55] and
ADAM-12 [56]. The apparent Ki value reported against
TACE is 182 pM.

Using the N-terminal domain of TIMP-3 expressed in
Escherichia coli, Kashiwagi et al. [32] have shown that it
inhibits two aggrecanases (ADAMTS-4 and ADAMTS-5),
a subclass of the ADAM proteinases. The Ki values for
ADAMTS-4 and ADAMTS-5 were estimated to be less
than 0.5 and 0.1 nM, respectively, whereas the Ki values
for MMP-1, MMP-2 and MMP-3 were 1.2, 4.3 and
66.7 nM, respectively. These data suggest that the primary
target enzymes of TIMP-3 in cartilage are aggrecanases.
TIMP-3 mRNA is expressed in cartilage and skeletal tissue
during development of mouse embryo [57], in normal
bovine and human articular chondrocytes, and in synovio-
cytes [58]. The expression of TIMP-3 in chondrocytes in
culture is upregulated by transforming growth factor β
[59] and by oncostatin M [60]. An antiarthritic agent,
calcium pentosan polysulfate, increases the synthesis of
TIMP-3 without altering its mRNA levels, and this effect is
enhanced in the presence of IL-1 [61]. Elevated TIMP-3
production may be beneficial for the protection of cartilage
from degradation not only by preventing the action of
aggrecanases and MMPs in cartilage, but also by blocking
the release of TNF-α by TACE from synovium.

Another important feature of TIMP-3 is that a point muta-
tion in the C-terminal domain (S156C, G166C, G167C,
Y168C or S181C) [62], a splice mutation [63] or a pre-

mature termination codon at Glu179 [64] is linked to
Sorsby’s fundus dystrophy, an autosomal-dominant inher-
ited manuclar disorder that causes irreversible loss of
vision with onset in the third or fourth decade of life.
Choroidal neovascularization is a feature of this disease
that closely resembles the events seen in age-related
macular degeneration. Qi et al. [65] reported that the
S156C mutant expressed in human retinal pigment epithe-
lial cell lines exhibited reduced MMP inhibitory activity and
that the conditioned medium had angiogenic activity, sug-
gesting that increased MMP activity may participate in
neovascularization in Sousby’s fundus dystrophy.

Yeow et al. [66] also reported that S156C mutant protein
slightly reduced MMP inhibitory activity, but this reduction
is not considered significant. Their study showed that
mutations (S156C and S181C) produced multiple higher-
molecular-weight complexes due to aberrant protein–
protein interactions, and increased cell adhesiveness to
ECM, suggesting possible effects on normal function and
turnover of Bruch’s membrane.

TIMPs are multifunctional proteins
TIMPs have a number of biological activities other than
inhibiting MMPs, some of which are not attributed to inhi-
bition of MMPs. When TIMP-1 was first cloned [67], it
was found to be identical to a factor that has erythroid
potentiating activity [68].

TIMP-1 also has cell growth-promoting activity on human
keratinocytes and other cell types [69,70]. Similar cell
growth-promoting activity is seen with TIMP-2 [71,72]. On
the contrary, the overexpression of TIMP-1, TIMP-2 and
TIMP-3 reduces tumour cell growth (see [73] for review).
This may be partially due to the inhibition of MMPs.

TIMP-2, but not TIMP-1, inhibits fibroblast-growth-factor-2-
induced human endothelial cell growth [74]. TIMP-2 has
metanephritic mesenclynal growth activity and promotes
morphogenesis of the ureteric bed by inhibiting its branch-
ing and by altering the deposition of basement membrane
[75]. The former activity is not due to MMP inhibitory activ-
ity, whereas the latter activity is mimicked by a synthetic
MMP inhibitor.

The overexpression of TIMP-3 causes apoptotic cell death
of a number of cancer cell lines and vascular smooth
muscle cells [49,76–78]. Smith et al. [49] suggest that
the induction of apoptosis is due to the stabilization of
TNF-α receptors, perhaps by inhibiting receptor shedding.
Studies by Bond et al. [79] also suggest that the inhibitory
activity of TIMP-3 is required for induction of apoptosis. In
contrast, TIMP-1 and TIMP-2 suppress the apoptosis of B
cells [80] and BB16F10 mouse melanoma cells [81],
respectively. Antiapoptotic activity of TIMP-1 is indepen-
dent of MMP inhibition [80].

Arthritis Research    Vol 4 Suppl 3 Nagase and Brew
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Inhibition mechanisms of MMPs by TIMPs
The NMR solution structure of the N-terminal domain of
TIMP-2 (N-TIMP-2) revealed a five-stranded β-barrel with a
Greek key topology and two α-helices, a structural form
known as an OB fold [82]. This category of structure is
found in a group of oligonucleotide-binding and oligosac-
charide-binding proteins such as staphylococcal nuclease,
bacterial entrotoxins and some tRNA synthases [83]. This
structure did not, however, identify the MMP interaction
site in TIMP or clarify its mechanism of inhibition.

The inhibitory site of TIMP-1 was first proposed from a
combination of differential proteinase susceptibility studies
[84] and site-directed mutagenesis studies [85]. The
former studies were based on the observation that human
neutrophil elastase inactivated TIMP-1 by cleaving the
inhibitor into 10 and 20 kDa fragments. This cleavage by
the elastase was, however, prevented when TIMP-1
formed a complex with MMP-3. The full TIMP-1 activity
was recovered from the elastase-treated TIMP-1–MMP-3
complex after dissociation of the complex [84].

Sequence analysis of the TIMP-1 fragments indicated that
elastase cleaved the Val69–Cys70 bond of the free
TIMP-1, suggesting that the MMP interaction site is located
near this region. Based on this information and chemical
modification studies, a series of mutagenesis studies were
carried out with N-TIMP-1. The mutation of Thr2 to alanine
resulted in a more than 100-fold decrease in affinity for
MMP-3 and in about a 1000-fold decrease for MMP-1
[85]. Mutation of either Cys1 or Cys70, which are disulfide-
bonded in native TIMP-1, decreased the affinity for MMP-3
by more than three orders of magnitude. These studies
suggest that residues around the disulfide bond between
Cys1 and Cys70, which are conserved among TIMPs, are
critical for the interaction with MMPs. The NMR structure of
N-TIMP-2 indicated that this region forms an exposed ridge
structure on the inhibitor molecule [82].

The mechanism by which TIMP inhibits MMPs was
revealed by the crystal structure of the complex of human
TIMP-1 and the catalytic domain of MMP-3 [MMP-3(∆C)]
[86], and of the complex of the bovine TIMP-2 with the cat-
alytic domain of MT1-MMP [87], both determined by Bode
and colleagues. The structure of the TIMP-1–MMP-3(∆C)
complex shows that TIMP-1 is a ‘wedge-shaped’ molecule,
and its edge corresponding to the aforementioned
exposed ridge structure inserts into the catalytic site and
substrate binding groove of MMP-3 (Fig. 1).

A schematic display of the secondary structure of TIMP-1
is shown in Fig. 2. Most (75%) of the protein–protein con-
tacts in TIMP-1 are from a contiguous region composed of
the N-terminal stretch of Cys1 to Val4 and residues Met66
to Val69 linked by the Cys1–Cys70 disulfide bond. The
key feature of this interaction is the binding of residues

1–4 of TIMP-1 to the active site of the enzyme in an analo-
gous fashion to the P1-P1′-P2′-P3′ residues of a peptide
substrate (the P1 and P1′ residues become the new C-
terminus and the new N-terminus, respectively, after
hydrolysis), but cleavage does not take place. Residues
Ser68 and Val69 fit into the substrate binding sites S2
and S3 in an arrangement that is nearly inverted from that
of a substrate. A key feature of this interaction is the
bidentate coordination of the catalytic Zn2+ of the enzyme
by the α-amino and carbonyl groups of the N-terminal cys-
teine of TIMP-1 and the projection of the side chain of
Thr2 into the S1′ specificity pocket of MMP-3 (Fig. 3a).
This mode of interaction is similar to that of a synthetic
hydroxamate inhibitor of MMPs (Fig. 3b). The HO group of
Thr2 interacts with Glu202 of MMP-3 and displaces a
water molecule from the active site that is essential for
hydrolysis of a peptide bond.

On binding to TIMP-1, a large conformational change
occurs in the N-terminal region of MMP-3. This change
involves the disruption of the salt bridge between the α-
amino group of the N-terminal Phe83 and the carboxylate
side chain of Asp237, and thus results in a movement of
15 Å by the N-terminal region and in an interaction with

Available online http://arthritis-research.com/content/4/S3/S051

Figure 1

A ribbon diagram of tissue inhibitor of metalloproteinases 1 (TIMP-1)
bound to the catalytic domain of matrix metalloproteinase 3 [MMP-3
(∆C)]. TIMP-1 is shown in green and MMP-3 (∆C) is shown in light
brown. Cystines, Thr2, Val4 and Ser68 in TIMP-1 are indicated: N, blue;
O, red; C, grey; and disulfide bonds, yellow. Strands and helices in TIMP-
1 are labelled A–J and 1–4, respectively. The catalytic and structural zinc
ions are shown in purple, and calcium ions are shown in orange. The
image was prepared from the Brookhaven Protein Data Bank entry
(1UEA) using the Swiss PDB viewer [91].
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Met66 of TIMP-1. Other MMP interaction sites are the A–B
loop, the E–F loop, and residues Leu133 and Ser134 of the
C-terminal domain (see Fig. 2). The structure of the TIMP-
2–MT1-MMP complex shows a similar inhibitor–enzyme
interaction to that of the TIMP-1–MMP-3 complex.

Generation of selective TIMP variants
The interaction of residues 2 of TIMP-1 and TIMP-2 with
the S1′ site of an MMP appears to be a conserved feature
of the TIMP–MMP interaction. Because of the dominant
role of the P1′ residue of a substrate in MMP specificity
and because of the differences in size of the S1′ speci-
ficity pockets of different MMPs, TIMP variants with chemi-
cally different side chains at position 2 may be more
selective for different MMPs.

Meng et al. [88] investigated this possibility by substituting
position 2 in N-TIMP with 14 different amino acids and mea-
suring the Ki values of variants against MMP-1, MMP-2 and
MMP-3. Table 1 shows that residue 2 has a major role in
TIMP–MMP recognition. The absence of a side chain
(glycine mutant) reduced the affinity for MMPs by three to
five orders of magnitude, reflecting a loss of 33–55% of the
free energy of interaction. Thus, although Thr2 is only a
small part of the TIMP side of the interaction interface, it has
a major role in the stability of the protein–protein interaction,
and therefore represents a ‘hot spot’ for complex formation.

One striking feature of residue 2 in N-TIMP-1 is that muta-
tion at this site significantly alters the affinity for different

Arthritis Research    Vol 4 Suppl 3 Nagase and Brew

Figure 2

A schematic display of the secondary structure of tissue inhibitor of metalloproteinases 1 (TIMP-1). The crystal structure of TIMP-1 was determined
as a complex with the catalytic domain of MMP-3 [86]. Strands (A–J) and helices (H1–H4) are shown. Two glycosylation sites are indicated by
diamonds.

Figure 3

A schematic representation of (a) the N-terminal region of tissue
inhibitor of metalloproteinases 1 (TIMP-1) and (b) a peptidyl-
hydroxamate inhibitor. The scheme of TIMP-1 is based on the crystal
structure of the TIMP-1–MMP-3(∆C) complex [86].
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MMPs. It is notable, however, that a comparison of the
effects of a particular amino acid in the P1′ position of a
peptide substrate on kcat/Km [89] (Table 2) with its effects
as residue 2 of TIMP on MMP binding (1/Ki) show a poor
correlation [88] (Fig. 3). This indicates that there is a large
difference between recognition of the P1′ residue of a
substrate and residue 2 of TIMP for MMPs. This discrep-
ancy is probably due to a greater loss of conformational
entropy associated with peptide substrate–MMP interac-
tions compared with TIMP–MMP interactions. The orienta-
tion of residue 2 of TIMP-1 may also be influenced by the
rigid structure around the two disulfide bonds in this
region. Several mutants show potentially useful changes in
specificity (e.g. the Arg2 mutant, which discriminates
strongly against MMP-1).

Because the interaction between TIMP and MMP involves
multiple sites, more specific mutants with multiple substitu-
tions can be designed. Val4 and Ser68 were chosen
because they are part of the core contact region with the
MMP (Fig. 4). Substitutions for Val4 and Ser68 have signif-
icant effects on specificity (Wei et al., unpublished obser-
vations). The properties of the multisite mutants exhibit
further enhancement in selectivity. The triple mutant
T2L/V45/S68A exhibits high selectivity for MMP-2

(Table 1). Further experiments are necessary, but the
unique structures around the reactive site of TIMPs provide
new leads for designing selective MMP inhibitors.

Future prospects
The balance between MMPs and TIMPs is critical for the
appropriate maintenance of tissues, and its disruption per-
turbs tissue homeostasis. A number of MMPs and
ADAMTSs play major roles in cartilage matrix breakdown
in arthritis. Several potent, orally available MMP inhibitors
have been developed by a number of pharmaceutical com-
panies and some were clinically tested for the treatment of
arthritis or cancer, but none were found to be efficacious
[90]. The reasons for this failure are not clear. It may be
due to inhibition of nontargeted metalloproteinases or the
inhibitor concentration may not have reached an effective
level in the target tissue. In addition, there are general con-
cerns about the safety of synthetic MMP inhibitors. For
example, when the broad-spectrum MMP inhibitor Marima-
stat (British Biotech Pharmaceuticals, Oxford, UK) was
used in cancer trials, it caused musculoskeletal problems
manifested by tendonitis, joint pain, stiffness and reduced
mobility. This may be due to nonselective inhibition of
metalloproteinases that are biologically important.

Alternative approaches to preventing accelerated matrix
breakdown may be to deliver natural inhibitors or natural
inhibitor-derived selective inhibitors to the target tissue
using gene transfer technologies.

Concluding remarks
The elucidation of the mode of interaction of TIMPs with
MMPs and their inhibition mechanisms has introduced a
new opportunity to engineer TIMP so that the variants
selectively inhibit MMPs. In combination with gene transfer
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Table 1

Ki values of the N-terminal domain of tissue inhibitor of
metalloproteinases 1 (N-TIMP-1) and its variants

Variant MMP-1 MMP-2 MMP-3

N-TIMP-1 3.0 1.1 1.9

Thr2 to serine 25 2.1 0.5

Thr2 to glycine 18 × 103 103 × 103 1.4 × 103

Thr2 to alanine 2090 307 126

Thr2 to leucine 93 1.0 3.2

Thr2 to isoleucine 262 5.6 20

Thr2 to valine 1.6 4.5 3.0

Thr2 to methionine 11 0.7 0.7

Thr2 to phenylalanine 42 17 13

Thr2 to asparagine 1970 16 44

Thr2 to glutamine 870 12 29

Thr2 to aspartic acid 8130 1250 1110

Thr2 to glutamic acid 5730 433 468

Thr2 to lysine 1670 31 70

Thr2 to arginine 5010 12 28

Thr2 to leucine
Val4 to serine >2000 6.8 196
Ser38 to alanine

MMP, matrix metalloproteinase.

Table 2

Relative sequence specificities of matrixins influenced by the
P1′′ position

Relative rate of hydrolysis

P4-P3-P2-P1~P1 ′′ -P2′-P3′-P4′ MMP-1 MMP-2 MMP-3

Gly-Pro-Gln-Gly ~ Ile-Ala-Gly-Gln 100 100 100

Gly-Pro-Gln-Gly ~ Leu-Ala-Gly-Gln 130 88 110

Gly-Pro-Gln-Gly ~ Val-Ala-Gly-Gln 9.1 30 53

Gly-Pro-Gln-Gly ~ Ser-Ala-Gly-Gln 5.9 15 45

Gly-Pro-Gln-Gly ~ Phe-Ala-Gly-Gln 20 55 140

Gly-Pro-Gln-Gly ~ Met-Ala-Gly-Gln 110 230 60

Gly-Pro-Gln-Gly ~ Gln-Ala-Gly-Gln 28 34 38

Gly-Pro-Gln-Gly ~ Glu-Ala-Gly-Gln <0.5 <0.5 <0.002

Gly-Pro-Gln-Gly ~ Arg-Ala-Gly-Gln <0.5 <0.5 <4.9

MMP, matrix metalloproteinase.
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technologies, it is hopefully possible to deliver a selective
TIMP variant to the target tissue. Mutagenesis studies
conducted in our laboratories indicate that the rigid nature
of the reactive site of TIMP provides a unique mode of
interaction with MMPs that is significantly different from
those of peptidomimetic synthetic inhibitors. The use of
this type of interaction may allow us to design new types
of inhibitors. This requires a thorough understanding of the
interaction between the target enzyme and the inhibitor.
Further investigations of the mode of interaction of TIMP-3
with aggrecanases and TACE are particularly important for
the future development of selective inhibitors against
these enzymes as potential therapeutics to prevent carti-
lage matrix breakdown.

Glossary of terms
ADAM = a disintegrin and a metalloproteinase; ADAMTS =
ADAM with thrombospondin type I domain; ECM = extra-
cellular matrix; MMP = matrix metalloproteinase; MMP-3
(∆C) = catalytic domain of MMP-3; MT1-MMP = mem-
brane-type 1 matrix metalloproteinase; N-TIMP = N-termi-
nal domain of tissue inhibitor of metalloproteinases;
proMMP = zymogen form of MMP; TACE = tumour-necro-
sis-factor-alpha-converting enzyme; TIMP = tissue inhibitor
of metalloproteinases.
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