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Abstract 

Background: The identification of patients with knee osteoarthritis (OA) likely to progress rapidly in terms of struc‑
ture is critical to facilitate the development of disease‑modifying drugs.

Methods: Using 9280 knee magnetic resonance (MR) images (3268 patients) from the Osteoarthritis Initiative (OAI) 
database , we implemented a deep learning method to predict, from MR images and clinical variables including body 
mass index (BMI), further cartilage degradation measured by joint space narrowing at 12 months.

Results: Using COR IW TSE images, our classification model achieved a ROC AUC score of 65%. On a similar task, 
trained radiologists obtained a ROC AUC score of 58.7% highlighting the difficulty of the classification task. Additional 
analyses conducted in parallel to predict pain grade evaluated by the WOMAC pain index achieved a ROC AUC score 
of 72%. Attention maps provided evidence for distinct specific areas as being relevant in those two predictive models, 
including the medial joint space for JSN progression and the intra‑articular space for pain prediction.

Conclusions: This feasibility study demonstrates the interest of deep learning applied to OA, with a potential to sup‑
port even trained radiologists in the challenging task of identifying patients with a high‑risk of disease progression.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
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Introduction
Osteoarthritis (OA) is a common disease which consti-
tutes the fourth leading cause of disability worldwide 
[1]. According to the US National Health Interview Sur-
vey, up to 14 million American people are considered to 
have a symptomatic knee [2], with additional tens of mil-
lions affected as well in Europe, South America, Asia, or 
Middle East [3]. As a consequence of ensuing healthcare 
expenditures and losses of activity, the economic burden 

associated with OA is estimated to represent up to 2.5% 
of Growth National Product in Western countries [4].

The standard of care for OA based on both non-
pharmacological and symptomatic pharmacologi-
cal treatments has only a limited effect on function 
and pain. Thus, a very high unmet medical need 
still persists for a disease-modifying osteoarthritis 
drug (DMOAD) counteracting disease progression 
for both function and pain and avoiding the require-
ment for knee surgical replacement. As of today, the 
development of such DMOADs has been unsuccess-
ful for two reasons. First of all, significant differences 
are observed among patients in terms of progression 
of cartilage degradation. Secondly, in the absence of 
any established patient stratification in the form of 
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endotypes reflecting well-characterized pathophysi-
ological mechanisms, the slow and heterogeneous evo-
lution of the disease makes it difficult to evaluate the 
effectiveness of a treatment in a broad patient popu-
lation, within the 1 or 2 year(s) usual timeframe of a 
clinical study [5].

In this context, a personalized medicine approach is 
being considered to treat OA, consisting in identifying 
the most appropriate target populations predicted to 
benefit from DMOADs [6]. Primary efficacy endpoints 
required to document DMOAD efficacy include both 
clinical variables such as requirement for joint replace-
ment as well as structural changes. The diagnosis of 
knee OA and the evaluation of its severity are currently 
based on imaging, with radiography remaining the 
most commonly used modality in clinical practice [7]. 
Specifically, knee X-rays are used to determine the JSW 
(joint space width) as a measurement of the distance 
between tibia and femur considered as an indicator of 
cartilage thickness. X-rays of the knee performed for an 
individual patient at various time points allow to define 
the JSN (joint space narrowing) as a change in JSW over 
time [8]. Current regulatory guidelines for clinical trials 
aiming at evaluating candidate DMOADs recommend 
that JSN should be used as the primary endpoint in 
those trials [9].

One limitation, however, is that a reliable evaluation 
of JSN during patient follow-up remains difficult [10]. 
A clustering method on OAI data during an 8-year fol-
low-up concluded that only 29% of patients displayed a 
radiographic progression (as defined by JSN), with no 
further association between progression and pain wors-
ening [11]. In this context, the use of MRI emerges as a 
better quantitative endpoint recommended for assess-
ing morphological changes in knee cartilage during OA 
[12]. MRI allows the assessment of meniscal lesions 
such as root meniscal tears and extrusions known to be 
associated with OA progression [13, 14]. It also detects 
other lesions predictive of pain, such as the presence of 
synovitis and synovial fluid effusion [15] or bone mar-
row lesions [16].

We thus undertook the present study in support of 
the development of candidate DMOADs; in order to 
assess the feasibility of identifying future progressors 
of knee OA to assess whether knee MR images could 
predict further cartilage degradation 12 months ahead, 
we implemented a deep learning method using MR 
images to build up a predictive model for future pro-
gression of knee OA, measured by JSN 12 months after 
image acquisition. Additional analyses were conducted 
in parallel to predict pain grade evaluated by the West-
ern Ontario and McMaster Universities Osteoarthritis 
Index (WOMAC).

Methods
Description of the Osteoarthritis Initiative (OAI) database
Overview of OAI database
The OAI database is a public multi-center longitudinal 
database assembled by a consortium led by the National 
Institutes of Health in the US to help better understand 
and prevent the progression of knee OA [17]. At base-
line, a total of 4796 patients had a bilateral standing knee 
radiograph (X-ray) and 3D knee MRI. Follow-up vis-
its were done at 12, 24, 36, 48, 72, and 96 months (with 
65% of patients enrolled at baseline having a 96 month 
follow-up visit). The knee MRI sequences include sagittal 
3D DESS, coronal 2D IW TSE, and sagittal 2D IW TSE 
fat-suppressed. A detailed description of MRI sequences 
from the OAI database can be found in Peterfy et al. [18]. 
The database further contains clinical information (age, 
sex, body mass Index [BMI],...), including as well results 
of pain assessment from WOMAC, a self-administered 
questionnaire encompassing for each visit up to 24 items 
divided into 3 subscales (i.e., pain, stiffness and physical 
function). Assessments from X-rays such as Kellgren & 
Lawrence (KL) grade [19] and JSW were performed as 
well in the cohort at several locations in the medial and 
lateral joint spaces.

OAI data analysis
The model was trained on N = 9280 knee MR images (2D 
MRI images of type “COR IW TSE”; detailed informa-
tion regarding this type of MRI sequence can be found in 
Peterfy et al. [18]. We used data from 3268 patients (some 
patients had COR IW TSE knee MRI for both knees 
whereas others only had COR IW TSE images for a sin-
gle knee). Those 9280 images were obtained in a sliding 
window fashion: baseline images were considered to pre-
dict month 12 JSN, month 12 images to predict month 
24 JSN, and month 24 images to predict month 36 JSN. 
In light of some data losses (missing JSW measurements, 
corrupted image data), some images in the OAI database 
could not be used in the present study. In parallel to those 
computational analyses, two radiologists (one senior with 
more than 20 year experience in musculoskeletal imaging 
and one junior, resident in radiology) were given the task 
to assess a more restricted set of data corresponding to 
N = 300 baseline knee MRI images.

Endpoints used in the study
Joint space narrowing
OA progression, defined as cartilage degradation over 
time, was measured by using X-ray images as the mini-
mum JSW in the medial compartment of the knee, with 
a semi-automated method described in Benichou et  al. 
[20]. This semi-automated measurement was obtained 
at several time points (baseline, 12 months, 24 months). 
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As proposed by Bruyere et al. [21], a 12-month OA pro-
gressor was defined as a patient’s knee exhibiting a JSN 
at 12 months lower than − 0.5 mm: JSN (t + 12 months) = 
JSW(t + 12 months) − JSW(t) ≤ − 0.5 mm, where t can be 
baseline, 12 month, or 24 month visits. The threshold of 
− 0.5 mm for minimum radiographic JSN was identified 
as clinically relevant in several studies; see Reginster et al. 
[22] for a review. Since the JSN criteria were evaluated 
separately for each knee, a patient could be a 12-month 
OA progressor for a single knee or both. Moreover, a 
patient could be a progressor for a given knee between 
baseline and month 12 and then be a non-progressor 
between month 12 and month 24. Using this JSW vari-
ation as a threshold, we proceeded to identify from knee 
MRIs those patients predicted to lose at least 0.5 mm of 
knee cartilage.

WOMAC pain score
A secondary objective was to study the prediction of pain 
encoded by the WOMAC score, using contemporary 
MR images and clinical data (see description of clinical 
variables in Table 1 in additional materials). Hence, this 
objective was not to build a model predictive of future 
evolutions of the disease, but rather to explain the cur-
rent state of the disease, still exploiting a combination of 
imaging and clinical information.

Evaluation
The performance of models described below was evalu-
ated using a fivefold cross-validation scheme and meas-
ured with the following metrics: area under the receiver 

operating characteristic (ROC AUC score), area under 
the precision-recall (PR) curve, and F1 score. These met-
rics are well suited to binary classification tasks which 
suffer from class imbalance.

Preprocessing of MRI data
Prior to feeding images into the model, several preproc-
essing steps have been applied sequentially in order to 
normalize the dataset, as illustrated in Fig. 1 and summa-
rized below.

Image conversion and selection
The OAI database exposes images in the DICOM format. 
In order to ease image reading and writing operations, 
each acquisition was converted to the NIFTI format (rep-
resenting a full, three-dimensional image) by using the 
dcm2niix software [23].

In order to select images containing most relevant ana-
tomical information, a set of 8 consecutive slices around 
the middle slice was selected as it provides input slices 
which contain images of the knee while avoiding the ones 
with black pixels only.

Image orientation
The OAI database contains images of both knees for each 
patient. Specifically, left knee images are RAS (right, 
anterior, superior)-oriented, while right knee images 
are LAS (left, anterior, superior)-oriented. In order to 
homogenize the dataset, orientations were normalized 
for all images. To this aim, images of right knees have 
been “mirrored” along the sagittal-axial plane in order to 

Fig. 1 Overview of the image preprocessing pipeline. The raw MR image is first re‑oriented so that both left and right knees are similarly oriented. 
Noteworthy, only the left knee image is flipped, whereas the right is maintained as is, in order to obtain uniform orientations across the dataset. The 
N4 bias field correction is then applied, followed by a color normalization step
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look similar to images of left knees. This operation was 
performed using the NiPype python library [24].

Bias field correction
MR images can suffer from local magnetic field varia-
tions, resulting in artifacts in the reconstructed image. To 
solve this problem, the N4 bias field correction method 
[25] was applied to reconstructed images.

Color normalization
The final processing step is a color normalization step, 
which clips out extreme intensity values in the MRI 
(respectively the 10th and 80th percentiles of the inten-
sity distribution), aiming at erasing bright artifact in the 
images.

Model architectures
Feature extraction
In the present study, we used an EfficientNet-B0 network, 
pre-trained on ImageNet [26] to compute representa-
tions of input slices from SAG 3D DESS (or COW/SAG 
IW TSE) images. Each input slice was converted into a 
1280-dimensional feature vector. This approach, most 
suitable to address problems of very high dimensional-
ity, further allows to speed up model training by delegat-
ing the computationally cumbersome task of building 
meaningful representations from images, prior to feed-
ing those representations into a classification neural net-
work. An overview of the feature extraction process is 
presented in Fig. 2.

Architectures for 2D MRI sequences
Throughout this manuscript, 2D MRI sequences refer to 
both COR IW TSE and SAG IW TSE images listed in the 
OAI database. Those images usually contain less slices 

than 3D sequences such as SAG 3D DESS. Taking this 
into account, the architecture of the deep learning model 
used with 2D MRI sequences slightly differs from the 
ones developed for 3D sequences, as detailed thereafter.

Attention sub‑model In light of previous studies related 
to multiple instance learning, we implemented a gated 
attention mechanism [27] to compute attention scores 
(which can be viewed as “importance” scores) for each 
slice of the input image. Such scores were further used in 
the second part of the model. Starting from a set of one-
dimensional feature vectors for each slice, a 1-dimen-
sional convolution was applied (hence leading to one 
2-dimensional matrix per image), followed by a gated 
recurrent unit (GRU) layer. Such an architecture reduces 
the 2D matrix to a 1D vector (with one scalar score per 
input slice). This score was then scaled in the [0, 1] inter-
val through the use of a softmax activation function, thus 
preventing this sub-model from giving full importance to 
all slices.

Classification sub‑model Following calculation of 
importance scores, a mean weighted by those scores 
was computed from all feature vectors. Consequently, 
the model learned to select slices carrying informa-
tion through the above mentioned attention sub-model. 
Clinical variables were standardized before being concat-
enated to this vector, resulting in a 1290-long vector. A 
description of clinical variables can be found in the addi-
tional materials, Table 1. This multimodal 1-dimensional 
vector was then fed into a multi-layer perceptron (MLP) 
composed of two hidden layers with a ReLU activation. 
The MLP was followed by a softmax activation, output-
ting final class probabilities. In this approach, slices car-
rying little information (e.g., out-of-knee slices) were 

Fig. 2 Global overview of the feature extraction step. Converted images undergo several pre‑processing steps (reorientation, N4 bias field 
correction, color normalization) before submitting each slice as input to a pre‑trained EfficientNet‑B0 network. This neural network will compute 
1280 features (or numerical descriptors) for each slice, resulting in depth × 1280 features for an input volume (where depth corresponds to the 
number of input slices)
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given low attention scores, hence participating little (or 
not at all) to the final logits computed by the second sub-
model. A global overview of the model, from a group of 
feature vectors (one per slice of the image) to the final 
prediction (e.g., prediction of progression as an example), 
is presented in Fig. 3.

Human benchmark
To further qualify the performance of our predictive 
model in the identification of 12-month OA progres-
sors, we undertook a comparative study with two expert 
radiologists, one senior and the other more junior, on 
the same task. The senior radiologist has specialized in 
musculoskeletal imaging for more than 20 years whereas 
the junior radiologist has 2 years of experience. We first 
selected 300 knee MRI with both SAG 3D DESS, 2D 
COR IW TSE, and baseline clinical variables (age, gen-
der, BMI, height, weight and minimum JSW in the medial 
joint space). These 300 knee images were then used to 
create 150 pairs of knee MRI, each pair being composed 
of both a 12-month OA progressor and a non-progres-
sor. To account for noise measurement on the mini-
mum medial JSW, the 150 knee MRI of 12-month OA 
progressors were chosen such that 10 knees were from 
“almost certain” 12-month OA progressors with JSN 
(12 months) < − 1.1 mm, 130 satisfied − 1.1 mm ≤ JSN 
(12 months) < − 0.6 mm, and 10 were “doubtful” progres-
sors with − 0.6 mm ≤ JSN (12 months) < − 0.5 mm. These 
three classes of progressors reflect the distribution of 
12 month JSN in the OAI population. In addition, the 
− 1.1 mm threshold for “almost certain” 12-month OA 

progressors was computed using the methodology from 
Parsons et al. [28]. This threshold takes into account the 
standard deviation of JSW at baseline and 12 months and 
further ensures that, with a high probability (≥ 95%), 
the observed loss of knee cartilage is associated with a 
degenerative process rather than simply reflecting noise 
measurement. This methodology mimics the way ROC 
AUC is computed for a binary classifier [29] as it evalu-
ates the ability of either the radiologists or the classifier 
to correctly rank two images (picked at random) knowing 
that one is a positive sample whereas the other one is a 
negative.

Model interpretability
In order to get a better understanding of model predic-
tions, the GradCam method [30] was further used to 
visually pinpoint relevant characteristics within input 
images, as shown in Fig. 6.

Results
Prediction of progression at 12 months
To identify 12-month OA progressors from 
knee MRI, we developed models to predict JSN 
(t + 12 months) ≤ − 0.5 mm from 2D (SAG IW TSE and 
COR IW TSE) as well as 3D (SAG DESS) knee MRI 
sequences. The most promising results were obtained 
using the classification model depicted in Fig.  3 with 
slices (8 consecutive slices centered around the middle) 
from 2D COR IW TSE images and clinical variables (see 
Table  1 in the additional materials) as input. We thus 
report below on classification results obtained with 2D 
COR IW TSE sequences.

Fig. 3 Global overview of the model. The purple‑shaded area is a first sub‑model aiming to locate regions of interest within input images. The 
green‑shaded area represents the classification sub‑model, which aggregates both image and clinical information into progression (or pain score) 
probabilities
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The performance of our classification model was evalu-
ated using the ROC AUC score, well suited to this task 
as a metric given the class imbalance: only 9% of the 
available images are associated with a 12-month OA 
progression. Using COR IW TSE images, the proposed 
classification model achieved a ROC AUC score of 65%. 
This model achieved a precision of 13% and a recall of 
84%. The above results are further summarized in a con-
fusion matrix, reported in Fig.  4. Altogether, with SAG 
3D DESS images as an input (instead of COR IW TSE), 
the model achieved a ROC AUC score of 63%.

Human benchmark
The two radiologists concluded that, for most pairs, their 
decision was virtually random. Both radiologists found 
that 2D COR IW TSE volumes were less useful than SAG 
3D DESS. The junior radiologist obtained a ROC AUC 
score of 57.82% whereas the senior radiologist obtained 
59.72%. This benchmark with human radiologists high-
lights the difficulty of identifying 12-month OA progres-
sors using only knee MRI and clinical data at baseline. 
Nonetheless, these results show the added value of AI in 
assisting radiologists in a complex image analysis task.

Prediction of pain severity
We subsequently applied our deep learning approach 
to the prediction of pain contemporary to image acqui-
sitions. The grading of pain quantified by the WOMAC 

score was organized into two sets of values, including 
WOMAC pain score ≥ 2 and WOMAC pain score < 1. 
The rationale behind this stratification is twofold. On 
one hand, it reflects some clinical relevance in that pain 
scores below 2 are often identified as “no pain.” Further-
more, it facilitates a data-driven approach where inde-
pendent models can be trained and evaluated using only 
clinical data from different ranges of values. Such models 
were found to perform better when considering two sets 
of values with the above mentioned orders of magnitude.

Using this approach, our predictive model for pain 
achieves a mean PR AUC of 66.8% (± 1%), a mean ROC 
AUC of 72.4% (± 1%) and a mean weighted-F1 score of 
65.2% (± 1%). Corresponding ROC curves obtained for 
each of the five training folds are shown in Fig.  5. For 
comparison, a random predictor would achieve a mean 
ROC AUC of 50% and a mean weighted-F1 score of 60%. 
Globally, the model demonstrated good capabilities to 
identify high-pain knees (i.e., produce a relatively low 
number of false negatives), with however a tendency to 
misclassify non-painful knees (i.e., produce false posi-
tives), as can be seen in the confusion matrix represented 
Fig. 5, left panel.

Model interpretability
With the GradCam method (Fig.  6), yellow-colored 
regions were identified within the joint as the ones con-
tributing with a high probability to the positive class, 

Fig. 4 ROC curves and confusion matrix of the binary classification model to identify 12‑month OA progressors. The model aims to identify knees 
for which JSN (t + 12 months) ≤ − 0.5 mm. The five curves correspond to the fivefold cross‑validation scheme. The dotted diagonal line (purple) 
illustrates the performance of a random predictor
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i.e., progression in the case of JSN progression predic-
tion (Fig.  6, top row), and high WOMAC pain score in 
the case of pain prediction (Fig. 6, bottom row), respec-
tively. Purple-colored regions did not contribute to high 
probabilities in the predictions. Interestingly, this analy-
sis emphasized different regions of interest depending 
on the task. Specifically, JSN progression-related regions 
are highlighted by the model in the medial joint space. 
In contrast, for pain prediction, areas of interest are 
rather located in the intra articular space, where effu-
sion is observed in the case of congestive osteoarthritis 
(pouches such as suprapatellar pouch and joint spaces).

Discussion
Predicting disease progression in knee OA is critical to 
identify patients more likely to benefit from DMOADs 
and further, to help selecting patients and defining treat-
ment duration in clinical studies evaluating drug can-
didates [31]. In the present study, we thus developed a 
weakly supervised deep learning method to build up pre-
dictive models for OA progression at 12 months from MR 
images. Further analyses were also conducted to predict 
pain grade evaluated by WOMAC from MR images and 
clinical data at the same visit.

Using COR IW TSE images, our proposed classification 
model achieved a ROC AUC score of 63%, comparable 
to the performance of trained radiologists, obtaining a 
ROC AUC score of 59.72%. To our knowledge, this is the 

first application of a weak supervised learning method to 
the prediction of knee osteoarthritis progression from 
MRI. Although not shown, no improvement on perfor-
mance was observed on prediction of progression when 
considering a 24-month follow-up. We also successfully 
designed a task to identify imaging features associated 
with pain, leading to a model achieving a ROC AUC 
score of 72%. This encouraging result is likely explained 
by the presence of synovial effusion in painful knees, very 
contrasted in images, and thus easy to detect for a radi-
ologist. Our results are consistent with a previous study 
relying upon Siamese neural networks to analyze pairs 
of knees and predict pain with a high AUC (85.3%) [15]. 
This study confirmed that 86% of correctly predicted 
painful patients exhibited an effusion-synovitis within 
areas most associated with pain.

Our study further supports the use of deep learning 
[32] in musculoskeletal imaging. On 2D radiographs, 
previous studies have been successfully conducted for 
bone fracture detection [33], as well as automatic Kell-
gren and Lawrence Grading for knee OA [34]. Other 
studies on knee MRI showed strong performance on car-
tilage segmentation [35], as well as detection or grading 
of meniscal or anterior cruciate lesions [36]. All these 
studies relied upon “strong” labeling methods, requiring 
time-consuming manual image annotations by expert 
radiologists, in contrast to the deep learning approach 
reported here.

Fig. 5 ROC curve and confusion matrix for prediction of pain severity. Graphic representations are shown for the binary task of classifying sets of 
pain scores across the cross‑validation process
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Deep learning methods are often described as “black-
boxes,” referring to the lack of interpretability of their 
predictions. Interpretability can however be introduced 
in the form of “heatmaps” generated using a GradCam 
method [30] to highlight the relevant regions in the 
knee MRI used by the predictive model. In our study, 
such attention modeling of OA progression confirmed 
the importance of internal joint space, consistent with 
the fact that the joint space narrowing is evaluated in 
this anatomic compartment. The pain prediction model 
rather showed heatmaps focused on the intra-articular 
space, where cartilage, meniscal lesions, and effusion 
synovitis are observed. In future developments, other 
interpretability methods based on generative adversarial 
networks (GANs) could be applied to generate synthetic 
imaging features reflecting pathophysiologic processes 
of interest in OA. Whereas GANs modeling the natural 
history of OA progression observed on knee radiographs 

have been developed [37], such studies remain to be done 
on MRI.

Other developments in AI-based image analyses could 
be considered to improve the predictive models obtained 
in our feasibility study. For example, whereas we used 
MRI as inputs for predicting an endpoint determined 
from knee X-ray imaging, further studies could rather 
use MRI criteria as endpoints of progression in clinical 
trials of knee osteoarthritis rather than joint space nar-
rowing > 0.5 mm, which is a criteria difficult to quantify 
reproducibly. In this regard, we investigated, in a post 
hoc analysis, the use of different criteria to characterize 
OA progression. Whereas our initial analyses have been 
based on “absolute” JSN (12 months) ≤ − 0.5 mm, reflect-
ing that a knee is a “12-month OA progressor” when the 
minimum JSW is reduced by 0.5 mm in the medial joint 
space of the knee, we reasoned that this “absolute” cri-
teria may not be suited to knees with advanced OA. 

Fig. 6 Visual interpretation of relevant zones identified by prediction models. The upper row corresponds to prediction of JSN progression and 
the bottom row to pain prediction. Yellow areas are the ones considered of high interest by the model: the more intense the yellow, the higher 
its contribution to a high score for JSN progression prediction (bottom row, coronal view) or severe pain classification (top row, coronal view). All 
images are obtained from patient 9932578 (right knee)
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We thus considered as an alternative a “relative” crite-
ria defined by: JSN (t + 12 months) ≤ − 25% relative to 
JSW(t), with a threshold value chosen in order to ensure 
that the dataset has approximately the same class imbal-
ance as with the “absolute” criteria. In this approach, a 
classification model based on 2D COR IW TSE and vali-
dated using a 5-fold cross-validation strategy obtained an 
average ROC AUC score of 80%, suggesting an interest 
in considering relative over absolute JSN reduction as an 
alternative endpoint of OA progression.

Conclusions
The deep learning approach developed herein is based 
on “weak” labels for machine learning tasks, i.e., relying 
on information not explicitly shown in images as targets 
for predictions, in combination with clinical variables 
such as BMI (a “multimodal” approach). This data-driven 
methodology, which intends to predict the future evolu-
tion of a disease, is providing information that cannot 
be directly assessed in the clinical routine of a radiolo-
gist. This proof of concept shows the added value of 
deep learning in clinical practice as it applies to OA, with 
the promise of a convergence of intelligences between 
machines and radiologists in the interpretation of radio-
logical images [38, 39]. The future in the field is likely one 
of a new era of augmented radiology.
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Figure 8. Confusion matrix for the three‑classes WOMAC pain score. Rows 
correspond to “true” classes whereas columns correspond to predicted 
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Class 2 versus 0: Precision of 76%, recall of 20% and F1 of 32%.
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