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Abstract 

Background  Primary biliary cholangitis (PBC) is an autoimmune liver disease, whose etiology is yet to be fully eluci-
dated. Currently, ursodeoxycholic acid (UDCA) is the only first-line drug. However, 40% of PBC patients respond poorly 
to it and carry a potential risk of disease progression. So, in this study, we aimed to explore new biomarkers for risk 
stratification in PBC patients to enhance treatment.

Methods  We first downloaded the clinical characteristics and microarray datasets of PBC patients from the Gene 
Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified and subjected to enrich-
ment analysis. Hub genes were further validated in multiple public datasets and PBC mouse model. Furthermore, we 
also verified the expression of the hub genes and developed a predictive model in our clinical specimens.

Results  A total of 166 DEGs were identified in the GSE79850 dataset, including 95 upregulated and 71 downregu-
lated genes. Enrichment analysis indicated that DEGs were significantly enriched in inflammatory or immune-related 
process. Among these DEGs, 15 risk-related genes were recognized and further validated in the GSE119600 cohort. 
Then, TXNIP, CD44, ENTPD1, and PDGFRB were identified as candidate hub genes. Finally, we proceeded to the next 
screening with these four genes in our serum samples and developed a three-gene panel. The gene panel could 
effectively identify those patients at risk of disease progression, yielding an AUC of 0.777 (95% CI, 0.657–0.870).

Conclusions  In summary, combining bioinformatics analysis and experiment validation, we identified TXNIP, CD44, 
and ENTPD1 as promising biomarkers for risk stratification in PBC patients.
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Introduction
Primary biliary cholangitis (PBC) is an autoimmune liver 
disease, characterized by female predominance, non-sup-
purative destruction of small bile ducts, and specific anti-
mitochondrial antibodies (AMAs) [1, 2]. The etiology and 
pathogenesis of PBC are not well understood and may be 
associated with immune dysregulation, environment fac-
tors, and genetic susceptibility [3]. In recent years, the 
incidence and prevalence of PBC are increasing world-
wide. A recent meta-analysis showed that the annual 
incidence of PBC varied from 0.23 to 5.31 per 100,000, 
with a prevalence ranging from 1.91 to 4.02 per 100,000 
[4]. Moreover, as the disease progresses, it can eventually 
develop into cirrhosis and liver failure [5]. Of note, there 
are data suggesting the median survival of symptomatic 
patients was only 7.5 years [6].

Currently, ursodeoxycholic acid (UDCA) is the only 
first-line treatment for this disease, which could improve 
biochemical indexes and prolong transplant-free survival 
of patients [7]. However, yet up to 40% of patients with 
PBC have an incomplete response to UDCA [8]. These 
patients are identified as high-risk patients, who will go 
on to develop into cirrhosis and eventually progress to 
death due to the complications [9]. Recent guidelines rec-
ommend obeticholic acid (OCA) for use in combination 
with UDCA in PBC patients with inadequate response 
to UDCA [10]. A randomized placebo-controlled trial 
also showed the benefits of UDCA in combination with 
bezafibrate [11]. Nevertheless, it conventionally takes 
12 months to determine the UDCA response of patients 
[12–14]. In such cases, effective treatments are lacking 
for those high-risk patients. In fact, it is high-risk patients 
that need early interventions like a combination of medi-
cations. Thus, reliable markers that can early identify 
high-risk patients are urgently needed for refining thera-
peutic strategies.

Previous studies have shown that some baseline char-
acteristics could be used to predict the UDCA response, 
such as age, sex, autoantibodies, and biochemical indica-
tors [15–18]. In our previous studies, we also attempted 
to integrate relevant pretreatment clinical parameters to 
predict the inadequate UDCA response for PBC patients 
[19]. Although these features are frequently used as indi-
cators of disease progression, they have fallen short of 
depicting the true nature of the illness. At present, high-
throughput methods, like genomics and transcriptomics, 
have been widely utilized to identify key genes or path-
ways to elucidate the molecular mechanisms of multiple 
diseases [20–23]. The resulting omics information might 
offer access to estimate the risk of disease progression 
or clinical outcomes. Over the years, several non-coding 
RNAs were confirmed to be involved in pathogenesis 
and might become potential therapeutic target for PBC 

patients. For example, miR-506 may impair bile secre-
tion in PBC by inhibiting Cl−/HCO3

− anion exchanger 
2 (AE2) expressions [24]. miR-425 was identified a key 
regulator of inflammatory cytokine production in CD4+ 
T cells [25]. Our previous studies also demonstrated that 
a decline in LAMP-2 predicted the UDCA response of 
PBC patients. However, these individual markers remain 
to be verified in a large cohort of patients with PBC. With 
the aid of bioinformatics datasets of PBC deposited in 
GEO platform, we may achieve an in-depth mining of key 
genes or pathways which are closely related to the devel-
opment of PBC.

Therefore, this study was carried out to explore novel 
predictors of risk stratification for PBC patients. We 
firstly downloaded GSE79850 [26] and GSE119600 [27] 
from the GEO database. R language was utilized to stand-
ardize and analyze the microarray datasets to obtain 
risk-related genes. These genes were also examined in 
the PBC mouse model. Next, we validated these key bio-
markers using clinical serum samples in our center and 
further explored the predictive value in risk stratification 
of PBC.

Methods
Data collection
Series matrix files and corresponding clinical information 
of two datasets (GSE79850 and GSE119600) were down-
loaded from the GEO database (https://​www.​ncbi.​nlm.​
nih.​gov/​geo/). GSE79850 was based on the GPL 19965 
annotation platform, which included 16 PBC liver tissue 
samples and 8 control samples. These PBC patients were 
divided into high-risk or low-risk groups using clinical 
outcomes after long-term follow-up. High-risk patients 
were defined as non-responders to treatment with 
UDCA at 1  year using Paris-I criteria [14] and subse-
quently requiring liver transplantation. Low-risk patients 
were defined as responders to UDCA at 1 year and still 
responsive after a minimum of 15 years of follow-up. The 
GSE79850 dataset was firstly used to explore biomarkers 
for the disease progression. Next, the GSE119600 data-
set including 137 blood samples (90 PBC samples and 47 
healthy controls) was employed as a validation analysis 
dataset.

Identification of differentially expressed genes (DEGs)
The original files were firstly normalized by using Robust 
Multiarray Average (RMA) algorithm. Next, the “limma” 
package of R software (version. 4.0.1) was used to con-
duct differential analysis. The significance threshold was 
set at |Log2FC|> 1 and adjusted P-value < 0.05. To visu-
alize the identified DEGs, R software was used to make 
heatmaps and volcano plots by using the “pheatmap” and 
“ggplot2” packages.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Functional enrichment analysis
To further explore the potential biological functions of 
DEGs, we performed the functional enrichment analysis. 
The “clusterProfler” package was employed to conduct 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis.

Experimental animals
Our dnTGF-βRII mice were a generous gift from Pro. ZX 
Lian (Guangdong Provincial People’s Hospital). dnTGF-
βRII mice were bred onto a C57BL/6 (B6) strain back-
ground at the animal facilities of the Air Force Medical 
University [28, 29]. Male heterozygous dnTGFβ-RII mice 
were bred with female B6 mice to obtain female heterozy-
gous dnTGFβ-RII mice, which were genotyped to con-
firm the dnTGFβ-RII gene in their genomic DNA by the 
detection of the CD4 promoter at the age of 3–4 weeks 
[29]. All mice were maintained in individually ventilated 
cages under specific pathogen-free conditions. They were 
fed a standard chow diet ad  libitum with free access to 
water. At 12–14 weeks of age, animals were sacrificed by 
anesthesia with CO2 and their livers were processed as 
experimental requirements. The animal study protocol 
was approved by the Animal Welfare and Ethics Commit-
tee of the Air Force Medical University (20230945).

Histopathology
For hematoxylin and eosin staining, the whole liver tis-
sue was firstly fixed with 4% paraformaldehyde. Then, 
fixed tissues were embedded in paraffin, sliced into 4-μm 
sections, and subjected to hematoxylin and eosin stain-
ing. The slides were scanned and digitalized using Case-
Viewer software (3DHISTECH, Budapest, Hungary).

Clinical cohort for biomarker validation
Patients who were diagnosed as PBC from January 2021 
to December 2021 were enrolled as another validation 
cohort. The diagnosis of PBC was based on the 2018 
American Association for the Study of Liver Diseases 
PBC guidelines [6]. In the current study, patients were 
excluded if they had viral hepatitis (hepatitis B or C), 
steatohepatitis, or alcoholic liver disease. Patients com-
plicated with primary sclerosing cholangitis, autoim-
mune hepatitis, and other autoimmune diseases were 
also excluded. Blood samples from each participant 
were collected at their first visit to outpatient clinic and 
centrifuged at 3000 rpm for 10 min at 25 °C. The upper 
serum layer was extracted and stored in − 80 °C for sub-
sequent experiments. The clinical characteristics and 
biochemical indices were extracted from the electronic 
medical records. The detailed clinical information of 
the included patients is shown in Table 1. For PBC, the 

serum alkaline phosphatase and total bile acid are impor-
tant indicators for judging the prognosis of patients, 
which can be used as a surrogate endpoint in clinical tri-
als [30]. In the present study, we used the POISE criteria 
(ALP < 1.67 × upper limit of normal (ULN) and biliru-
bin < 1 × ULN) to distinguish high- or low-risk patients 
[31]. Informed consent written was obtained from all 
participants in this study and the study protocol was 
approved by the Ethics Committee of Xijing Hospital.

RNA extraction and gene expression analysis
Total RNA was extracted from 200 μl of serum using Tri-
zol reagent (Sigma, USA), and then, RNA was reverse 
transcribed into cDNA with a high-capacity cDNA 
reverse transcription kit (Takara). Quantitative real-
time PCR (qRT-PCR) analyses were performed by SYBR 
Green premix pro Taq HS qRT-PCR kit (Accurate Bio-
technology (Hunan) Co., Ltd) to validate gene expression, 
and the level of β-Actin served as an internal control. 
The relative expression of the target gene was calculated 
and normalized to the expression of the reference gene 
β-Actin. The primers’ sequences for qRT-PCR are shown 
in Supplementary Table 1.

Statistical analysis
Data were analyzed by using R software (version. 
4.0.1) and SPSS (version. 23.0). Continuous data was 
expressed as mean ± standard deviation or median 
and interquartile range. The Student t test or Mann–
Whitney U test was used for analysis as appropriate. 

Table 1  The clinical information of the included patients with 
primary biliary cholangitis

RBC red blood cell, HGB hemoglobin, PLT platelet, ALT alanine aminotransferase, 
AST aspartate aminotransferase, ALB albumin, ALP alkaline phosphatase, GGT​ 
gamma glutamyl transferase, TBiL total bilirubin

Characteristics Low risk High risk P-value
(N = 42) (N = 24)

Age (year) 53.31 ± 8.39 55.83 ± 8.83 0.253

Sex 0.101

  Male 3 (7.1%) 5 (20.8%)

  Female 39 (92.9%) 19 (79.2%)

RBC (× 109/L) 4.46 (4.11, 4.59) 4.14 (3.75, 4.48) 0.021

HGB (g/L) 128.5 (121.8, 138.3) 129.5 (109.3, 135.5) 0.268

PLT (× 109/L) 168.5 (131.3, 226.0) 120.5 (90.5, 173.3) 0.066

ALT (IU/L) 19.5 (12.8, 27.5) 39.5 (25.5, 83.5)  < 0.001

AST (IU/L) 30.0 (23.0, 36.5) 51.0 (37.0, 83.3)  < 0.001

ALB (g/L) 45.4 (42.8, 47.1) 42.6 (37.5, 45.8) 0.03

ALP (IU/L) 111.5 (87.5, 138.5) 214.0 (131.0, 299.3)  < 0.001

GGT (IU/L) 44.0 (24.8, 77.5) 129.5 (38.3, 320.5) 0.002

TBiL (μmol/L) 12.8 (9.6, 18.2) 27.7 (21.4, 42.7)  < 0.001
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Categorical data was described as frequency (percent-
age) and chi-square or Fisher’s exact tests were used to 
analyze differences between groups. Bivariate analy-
ses were performed using the Spearman correlation 
test. A logistic regression algorithm was used to con-
struct the predictive model. The receiver operation 
characteristic (ROC) curve and calibration curve were 
employed to examine the discrimination and calibra-
tion of the model. ROC curves were generated by Med-
Calc software (version. 19.2.1), while calibration curves 
were drawn with the R package “rms”. Two-tailed 
p-value < 0.05 was deemed statistically significant.

Results
Identification of DEGs between healthy controls and PBC 
patients
Figure 1 shows the overall workflow of this study and the 
detailed information of included clinical or animal speci-
mens is summarized in Table 2. Firstly, the gene expres-
sion series GSE79850 was normalized, and the results are 
shown in Fig. 2A, B. Principal component analysis results 
showed a good separation between PBC samples and 
Healthy controls (Fig.  2C). Then, we used the “limma” 
package to calculate the differential genes between the 
two groups (adjusted P-value < 0.05 and |Log2FC|> 1). 

Fig. 1  The workflow of this study



Page 5 of 14Tian et al. Arthritis Research & Therapy          (2023) 25:186 	

Compared with HC controls, a total of 166 DEGs were 
considered to be differentially expressed in PBC sam-
ples, including 95 upregulated genes and 71 downregu-
lated genes (Fig. 2D). The heatmap showed distinct gene 
expression patterns between two groups (Fig. 2E).

Functional enrichment analysis
To investigate the biological functions and signal path-
ways of DEGs, we performed the GO annotation and 
KEGG pathway analysis. As shown in Fig.  3A–C, GO 
enrichment analysis demonstrated that DEGs were 
mainly enriched in some immunity-related processes 
(e.g., T cell activation, positive regulation of cytokine 
production, MHC protein complex, cytokine activity, 
CCR chemokine receptor binding). Moreover, analysis of 
the KEGG signal pathways revealed that DEGs were sig-
nificantly annotated to inflammatory or immune-related 
processes (e.g., cytokine-cytokine receptor interaction, 
chemokine signaling pathway, and antigen processing 
and presentation) (Fig. 3D). The results of the enrichment 
analysis suggested that these inflammatory or immune-
related processes may play an important role in the 
occurrence and progression of PBC.

Identification of DEGs between high‑ and low‑risk PBC 
patients
In an attempt to further explore the heterogeneity of 
PBC patients, we carried out a subgroup analysis based 
on the risk of disease progression. From the analysis of 
differentially expressed DEGs between high- and low-risk 
patients, we obtained a total of 93 DEGs. The expres-
sion heatmap of DEGs is depicted in Fig.  4A. The dis-
tribution of DEGs was presented by the volcano plot, 
containing 39 upregulated genes and 54 downregulated 
genes (Fig.  4B). Simultaneously, function enrichment 
analysis of these DEGs was performed. It could be found 
that some immune-related processes, such as cytokine-
cytokine receptor interaction and chemokine signaling 
pathway, were also enriched in the high-risk group (Sup-
plementary Figure 1).

Selection of hub genes
Together with the above analysis, a total of 166 genes 
were differentially expressed between PBC samples and 

healthy controls, and 15 of them were associated with 
disease progression (Fig. 5A). The selected genes included 
7 up-regulated genes and 8 down-regulated genes. The 
expression patterns of these genes are depicted in Fig. 5B, 
C. Meanwhile, we used ROC curves to evaluate the pre-
dictive power of 15 genes in the risk assessment of dis-
ease progression. The AUC value > 0.85 in all 15 genes 
indicated the high diagnostic value of these markers for 
high-risk PBC (Supplementary Figure  2). Next, consid-
ering the invasive nature of liver biopsy, we attempted 
to translate these tissue-based genes into a noninvasive 
clinical application. An independent public database, 
namely GSE119600, was used to substantiate the expres-
sion patterns of these indicators. Compared with healthy 
controls, five of these fifteen genes were statistically sig-
nificant (Fig.  6A). Moreover, TXNIP, CD44, ENTPD1, 
and PDGFRB were consistent with the expression pattern 
detected in tissue samples (Fig. 6B–D). These genes were 
defined as core risk-related genes and used for subse-
quent analysis. Meanwhile, the above enrichment analysis 
suggested that CD44 was involved in the T cell activation 
and PDGFRB was involved in cytokine-cytokine receptor 
interaction. These biological processes are closely related 
to the inflammation and immune response, indicating 
these hub genes may participate in the occurrence and 
development of PBC.

Validation of hub genes in animal models
The dominant-negative TGFβ receptor type II (dnTGF-β 
RII) mouse is a classical PBC animal model [32, 33]. The 
typical pathology is characterized by a heavy infiltration 
of lymphocytes in the portal areas of the liver, which is 
consistent with the liver pathological phenotype of PBC 
patients (Fig.  7A). In the present study, we examined 
the expression of core genes in the liver of 12–14-week-
old dnTGF-β RII mice using the qRT-PCR. The results 
showed significantly elevated expression of these four 
core genes in dnTGF-β RII mice compared with nor-
mal controls (Fig.  7B–E). Besides, we examined the 
expression of these hub genes in the peripheral blood of 
dnTGF-β RII mice. As shown in Supplementary Figure 3, 
these genes displayed similar expression pattern.

Development of a three‑gene panel for screening high‑risk 
PBC patients
To further reveal the clinical significance of the key genes 
in the PBC, we collected peripheral blood samples from 
66 PBC patients in our center. We firstly compared the 
gene expression files of 4 core risk-related genes using the 
qRT-PCR. The results showed that three genes (TXNIP, 
CD44, and ENTPD1) were significantly upregulated in 
peripheral blood from high-risk PBC patients, while the 
expression of PDGFRB was not statistically different 

Table 2  Information of included clinical and animal specimens

Data source Sample type Sample size

GSE79850 Liver tissue 8 HC + 16 PBC patients

GSE119600 Peripheral blood 47 HC + 90 PBC patients

Animal model Liver tissue 
and peripheral blood

6 WT + 6 dnTGF-βRII mice

Clinical samples Peripheral blood 66 PBC patients
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Fig. 2  Normalization of the microarray datasets (GSE79850) and differential gene expression analysis. The gene expression value data 
before and after normalization (A, B). C Principal component analysis (PCA) of the samples. Blue dots represented the PCA values of 8 healthy 
controls, and red blots represented 16 PBC patients. D Volcano plots of differentially expressed genes. Blue circles represented downregulated 
genes and red circles represented upregulated genes. The screening threshold was set as |Log2FC|> 1 and adjusted P-value < 0.05 (TXNIP: 
|Log2FC|= 2.033 P-adj = 0.006, ENTPD1: |Log2FC|= 2.149 P-adj = 0.002, CD44: |Log2FC|= 1.183 P-adj = 0.041, PDGFRB: |Log2FC|= 1.500 P-adj = 0.016). E 
Heatmap analysis of all differentially expressed genes
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between the two groups (Fig. 8A–D). Moreover, we per-
formed a correlation analysis between these hub genes 
and liver function indicators. As shown in Supplemen-
tary Figure  4, the expression of these hub genes was 
positively correlated with markers of liver injury and 
cholestasis including alanine aminotransferase, aspartate 
aminotransferase, and alkaline phosphatase. Next, we 
evaluated if each individual gene or the three-gene panel 
may assist in differentiating high-risk patients from total 
patients. The area under the curves of TXNIP, CD44, 
ENTPD1, and the three-gene panel were 0.620, 0.731, 
0.750, and 0.777, respectively (Fig.  8E). The three-gene 

panel showed the best predictive power in identifying 
high-risk PBC patients in the serum validation cohort 
(Fig. 8F). Meanwhile, the calibration curve of the three-
gene panel showed that the predicted values were con-
sistent with the actual values (Fig. 8G).

Previous studies pointed out that ALP and TBiL were 
strong predictors of the prognosis of PBC patients, and 
they still have good predictive efficacy even in the analy-
ses stratified by age, disease course, and drug therapy [34, 
35]. To improve the performance of the three-gene panel, 
a refined model that integrated these indicators with 
the three-gene panel was constructed. The ROC curves 

Fig. 3  Functional enrichment analysis of differentially expressed genes. A–C GO enrichment analysis contained three categories: biological process, 
molecular function, and cellular component. D KEGG pathway enrichment analysis. The top 10 functional terms were listed



Page 8 of 14Tian et al. Arthritis Research & Therapy          (2023) 25:186 

showed that the combined model resulted in higher pre-
dictive accuracy (Supplementary Figure  5A-C). In addi-
tion, the calibration degree of the prediction model was 
also satisfactory (Supplementary Figure 5D-F).

Discussion
Primary biliary cholangitis is a chronic progressive chole-
static liver disease that can progress to cirrhosis if lacking 
effective therapeutic interventions. The risk assessment 
for disease progression of PBC is usually based on a 
variety of biochemical criteria. However, these crite-
ria have some limitations and cannot be used for early 
evaluation of therapeutic response. For example, some 
widely accepted standards like Barcelona, Paris-I, and 
Paris-II criteria often need 12  months to assess thera-
peutic effects. Zhang et al. tried to optimize the criteria 
and suggested to advance the time window for evalua-
tion. They pointed out that biochemical response at the 
6 months might be used in place of those evaluated after 
1 year of UDCA therapy [36]. However, these criteria are 
just based on biochemical indicators. There is still a lack 
of biomarkers that can early identify patients who are at 

high risk of progression in clinical practice. Therefore, it 
is crucial to identify new and effective biomarkers facili-
tating risk stratification.

Ben Barron et al. showed that serum levels of CXCL11 
and CCL20 could identify high-risk patients with a high 
degree of accuracy [37]. Besides, miR-125b, let-7b, and 
miR-520a-5p were suggested to be potential biomarkers 
for refractory PBC [38]. Ewa et al. validated that the activ-
ity of autotaxin is upregulated in refractory PBC patients 
and was related with poor survival [39, 40]. However, the 
definition of “high-risk” patients is fully dependent on the 
status of biochemical response. Our findings also showed 
that there were some differences among the various bio-
chemical criteria (data are not shown). In fact, these bio-
chemical criteria are just used as surrogate endpoints for 
long-term clinical outcomes. So, the application of hard 
endpoint, like liver transplantation, may enhance the reli-
ability of the conclusion. In addition, the results of these 
studies were mostly inferred from serum; the expression 
level of these genes in the liver was unknown.

In the present work, we reanalyzed the GSE79850 and 
identified 15 candidate genes for the assessment of the 

Fig. 4  Identification of differentially expressed genes (DEGs) between the high- and low-risk PBC patients. A Heatmap analysis of all DEGs 
between high- and low-risk groups. B Volcano plots of DEGs, blue circles represented downregulated genes and red circles represented 
upregulated genes. (TXNIP: |Log2FC|= 1.832 P-adj = 0.043, ENTPD1: |Log2FC|= 1.848 P-adj = 0.013, CD44: |Log2FC|= 1.597 P-adj = 0.029, PDGFRB: 
|Log2FC|= 1.619 P-adj = 0.034)
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risk of disease progression. In clinical settings, PBC is 
diagnosed when two of three criteria are met: elevated 
serum ALP, detection of AMA or other disease-specific 
autoantibodies, and typical histologic features by liver 
biopsy [6]. From this, liver biopsy is not indispensable for 
the diagnosis of PBC. So, examining these biomarkers in 
peripheral blood may be a better way to translate these 
tissue-based genes into a noninvasive routine clinical 
application. We used the GSE119600 to verify the result 

and identified 4 core genes (TXNIP, CD44, ENTPD1, and 
PDGFRB), which displayed similar expression pattern 
both in the liver and in peripheral blood. The expression 
level of four core genes in the liver or peripheral blood of 
PBC mouse model was also increased, implying that these 
genes may be involved in PBC pathogenesis. Finally, to 
confirm that the markers were repeatable for clinical use, 
we also used samples from PBC patients in our center to 
explore the predictive value of individual marker or the 

Fig. 5  Exploration of differentially expressed genes (DEGs) for evaluation of disease progression. A Venn diagram showing the risk-related DEGs. B 
The expression patterns of 15 genes in health controls and PBC patients. C The expression patterns of 15 genes in high- and low-risk PBC patients. 
*P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 6  Validation of risk assessment markers in peripheral blood samples from cohort GSE119600. A Heatmap of 15 risk-related differentially 
expressed genes. The expression of TXNIP, CD44, ENTPD1, and PDGFRB was significantly upregulated in PBC samples compared with health 
controls. *P < 0.05, **P < 0.01, ***P < 0.001

Fig. 7  Verification of four hub genes in PBC model mice. A Histological features of the 12–14 weeks liver of wild types and dnTGF-β RII mice. 
The typical pathology was designated by the black arrow, characterized by a heavy infiltration of lymphocytes in the portal areas of the liver. B–E 
The expression of TXNIP, CD44, ENTPD1, and PDGFRB was significantly upregulated in dnTGF-β RII mice compared with wild-type mice. *P < 0.05, 
***P < 0.001
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combined gene panel. Compared with low-risk patients 
(defined by the POISE criteria, ALP < 1.67 × ULN and 
bilirubin < 1 × ULN), the expression level of TXNIP, 
ENTPD1, and CD44 was upregulated in high-risk PBC 
patients with statistical significance. So, these three 
markers may be used in monitoring the disease progres-
sion of PBC patients. And the three-gene panel achieved 
a good predictive value with an AUC of 0.777 (95% CI: 
0.657–0.870).

In addition to facilitating the risk assessment, identify-
ing disease biomarkers may contribute to understanding 
disease mechanisms. In our study, functional enrich-
ment analysis showed that these risk-related genes were 
mainly engaged in T cell activation, positive regulation 
of cytokine production, and cytokine-cytokine recep-
tor interaction. It is well known that PBC patients have 
greater immune activation and higher cytokine levels 
than healthy people [41]. Enrichment analysis in our 
study also verified that signaling pathways regulating 
inflammation and the immune response were obviously 
enriched in the disease state.

Thioredoxin-interacting protein (TXNIP), also known 
as thioredoxin-binding protein 2 (TBP2), involves a 
reduction–oxidation (redox) signaling complex and has 

a pivotal role in mediating oxidative stress and inflam-
mation in many diseases [42, 43]. Previous studies dem-
onstrated that TXNIP could directly activate NOD-like 
receptor protein 3 (NLRP3) inflammasome, which regu-
lated the expression of IL-1β and IL-18 [44]. Meanwhile, 
Mick et al. showed elevated IL-1β and NLRP3 activation 
correlated with disease activity in PBC patients [45]. In 
our study, our results also showed that the expression of 
TXNIP was upregulated in the liver and serum. Thus, rea-
sonable hypothesis could be made that TXNIP might be a 
promising target in attenuating liver inflammation in PBC 
patients. ENTPD1 was the member of ectonucleoside 
triphosphate diphosphohydrolase family and expressed 
on the surface of innate and adaptive immune cell subsets, 
such as monocytes, dendritic cells, and T/B cells [46]. The 
function of the ENTPD1 was regarded as important mod-
ulators of the immune system, contributing to the balance 
between regulatory and effector lymphocytes in rheuma-
toid arthritis, Crohn’s disease, and autoimmune hepatitis 
[47]. The clinical values or biological roles of ENTPD1 
have not been reported in PBC. Here, our results showed 
that the expression of ENTPD1 was significantly upregu-
lated in PBC patients, especially in high-risk patients. 
CD44 is a major receptor for hyaluronic acid and has 

Fig. 8  Examine the expression of four core genes in our validation cohort and develop a three-gene panel. The expression of A TXNIP, B CD44, C 
ENTPD1, and D PDGFRB in peripheral blood samples from 66 patients. E The area under the curve (AUC) of individual gene and the three-gene 
panel. F The ROC curve for the prediction of high-risk PBC patients according to the three-gene panel. G. The Calibration curve of the three-gene 
model. The calibration curve was close to 45°, indicating that the model had good predictive performance. NS, no significance, *P < 0.05, **P < 0.01, 
***P < 0.001
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been extensively studied in tumors. Recently, studies on 
the role of CD44 in inflammation have been reported. 
Presumably, CD8+T cells expressing high levels of CD44 
kill endothelial cells, resulting in massive extravasation of 
monocytes and CD4+T cells in the subarachnoid space 
[48]. Moreover, Qiang et  al. demonstrated that CD44 
deficiency resulted in reduced proinflammatory cytokine 
production in PCV2-induced lung of mice, and alleviating 
the pooling of T cells to the site of inflammation [49]. The 
liver pathology of PBC patients is characterized by the 
infiltration of a large number of lymphocytes in the por-
tal area. All the above studies suggest that CD44 plays a 
role in promoting the recruitment of inflammatory cells, 
which is consistent with the elevated expression of CD44 
found in high-risk PBC patients.

The merit of our study is that the three-gene panel was 
constructed based on multiple independent cohorts. 
Liver tissue samples are more helpful to reflect the 
pathology of the disease, while blood samples serve more 
for clinical translation. Admittedly, there were some limi-
tations in our study. First, the sample size for analysis and 
verification is relatively small. Second, in the validation 
phase of gene panel, we just conducted a cross-sectional 
design. It is still necessary to gather more data to conduct 
a prospective cohort study. Third, the current research 
merely analyzed the microarray datasets of PBC at the 
transcription level, without the involvement of genomics, 
proteomics, and metabolomics. In the future, integrated 
multi-omics analysis will shed further light on the disease 
pathogenesis and mechanisms of disease progression.

Conclusion
In summary, we identified three core genes (TXNIP, 
CD44, and ENTPD1) as potential biomarkers for the 
assessment of disease progression. Based on the above 
genes, we further developed a three-gene panel, which 
could help clinicians to early identify high-risk PBC 
patients to improve therapeutic strategies.

Abbreviations
ALP	� Alkaline phosphatase
AMAs	� Anti-mitochondrial antibodies
AUC​	� Area under the curve
DEGs	� Differentially expressed genes
dnTGF-βRII	� Dominant-negative TGFβ receptor type II
GEO	� Gene Expression Omnibus
GO	� Gene ontology
KEGG	� Kyoto Encyclopedia of Genes and Genomes
LAMP-2	� Lysosomal-associated membrane protein-2
MHC	� Major histocompatibility complex
OCA	� Obeticholic acid
PBC	� Primary biliary cholangitis
RMA	� Robust multiarray average
ROC	� Receiver operating characteristic
TBiL	� Total bilirubin
UDCA	� Ursodeoxycholic acid

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13075-​023-​03163-y.

Additional file 1: Supplementary Figure 1. Functional enrichment 
analysis of differentially expressed genes (DEGs) between the high- and 
low-risk PBC patients. (A) GO enrichment analysis contained three cat-
egories: biological process, molecular function, and cellular component. 
(B) KEGG pathway enrichment analysis. The top 10 functional terms were 
listed. Supplementary Figure 2. ROC curves of the 15 risk-related genes 
for the prediction of high-risk PBC patients in the GSE79850. Supplemen-
tary Figure 3. Validation of four hub genes in the peripheral blood sam-
ples of dnTGF-β RII mice. (A-D) Relative expression level of (TXNIP, CD44, 
ENTPD1 and PDGFRB) in wild types and dnTGF-β RII mice. ** P < 0.01, *** 
P < 0.001. Supplementary Figure 4. Correlation analysis between hub 
genes and liver functional indicators. Supplementary Figure 5. Predictive 
models integrated the gene panel with clinical parameters. (A-C) Receiver 
operating characteristic (ROC) curve analysis of the three models. (D-F) 
Calibration curve analysis of the three models. The calibration curve was 
close to 45°, indicating that the model had good predictive performance. 
Supplementary Table 1. Primers used in the Quantitative real-time PCR.

Acknowledgements
Not applicable.

Authors’ contributions
Study concept and design (YH, YLS, BL), acquisition of data and clinical sam-
ples (MZ), analysis and interpretation of data (SYT, YNH, KMW), drafting of the 
manuscript (MZ, YNH, SYT), critical revision of the manuscript for important 
intellectual content (GYG, YLS), administrative, technical, or material support, 
study supervision (YLS, YH).

Funding
The study was funded by National Natural Science Foundation of China 
(No. 81820108005, 82270551 & 81900502), National Key Research and 
Development Program of China (No. 2020YFA0710803 & 2017YFA0105704), 
and Key Research and Development Projects of Shaanxi Province (No. 
2021ZDLSF02-07, 2022ZDLSF03-03, 2023ZDLSF-33 & 2023KJXX-026).

Availability of data and materials
The data in this study that support the findings are available in the GEO data-
base (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) with the following data accession 
number(s): GSE79850 and GSE119600.

Declarations

Ethics approval and consent to participate
The study conformed to the provisions of the Declaration of Helsinki (as 
revised in 2013). The research was approved by the Institutional Research 
Ethics Committees of the Xijing Hospital (KY20173316-1). Written informed 
consent was obtained from all patients.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 State Key Laboratory of Cancer Biology, National Clinical Research Center 
for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical 
University, Xi’an 710032, Shaanxi, China. 

Received: 9 July 2023   Accepted: 7 September 2023

https://doi.org/10.1186/s13075-023-03163-y
https://doi.org/10.1186/s13075-023-03163-y
https://www.ncbi.nlm.nih.gov/geo/


Page 13 of 14Tian et al. Arthritis Research & Therapy          (2023) 25:186 	

References
	1.	 Lleo A, Wang G-Q, Gershwin ME, Hirschfield GM. Primary biliary cholangi-

tis. The Lancet. 2020;396(10266):1915–26.
	2.	 Gulamhusein AF, Hirschfield GM. Primary biliary cholangitis: patho-

genesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol. 
2020;17(2):93–110.

	3.	 Younossi Z, Bernstein D, Shiffman M, Kwo P, Kim W, Kowdley K, et al. Diag-
nosis and management of primary biliary cholangitis. Am J Gastroenterol. 
2019;114(1):48–63.

	4.	 Lv T, Chen S, Li M, Zhang D, Kong Y, Jia J. Regional variation and temporal 
trend of primary biliary cholangitis epidemiology: a systematic review 
and meta-analysis. J Gastroenterol Hepatol. 2021;36(6):1423–34.

	5.	 Carey E, Ali A, Lindor K. Primary biliary cirrhosis. Lancet (London, England). 
2015;386(10003):1565–75.

	6.	 Lindor KD, Bowlus CL, Boyer J, Levy C, Mayo M. Primary Biliary Cholangitis: 
2018 Practice Guidance from the American Association for the Study of 
Liver Diseases. Hepatology. 2019;69(1):394–419.

	7.	 European Association for the Study of the L. EASL Clinical Practice 
Guidelines: management of cholestatic liver diseases. J Hepatol. 
2009;51(2):237–67.

	8.	 Shah RA, Kowdley KV. Current and potential treatments for primary biliary 
cholangitis. Lancet Gastroenterol Hepatol. 2020;5(3):306–15.

	9.	 Grover VP, Southern L, Dyson JK, Kim JU, Crossey MM, Wylezinska-Arridge 
M, et al. Early primary biliary cholangitis is characterised by brain abnor-
malities on cerebral magnetic resonance imaging. Aliment Pharmacol 
Ther. 2016;44(9):936–45.

	10.	 European Association for the Study of the Liver. Electronic address eee, 
European Association for the Study of the L. EASL Clinical Practice Guide-
lines: The diagnosis and management of patients with primary biliary 
cholangitis. J Hepatol. 2017;67(1):145–72.

	11.	 Corpechot C, Chazouilleres O, Rousseau A, Le Gruyer A, Habersetzer F, 
Mathurin P, et al. A placebo-controlled trial of bezafibrate in primary 
biliary cholangitis. N Engl J Med. 2018;378(23):2171–81.

	12.	 Pares A, Caballeria L, Rodes J. Excellent long-term survival in patients with 
primary biliary cirrhosis and biochemical response to ursodeoxycholic 
acid. Gastroenterology. 2006;130(3):715–20.

	13.	 Kumagi T, Guindi M, Fischer SE, Arenovich T, Abdalian R, Coltescu C, 
et al. Baseline ductopenia and treatment response predict long-term 
histological progression in primary biliary cirrhosis. Am J Gastroenterol. 
2010;105(10):2186–94.

	14.	 Corpechot C, Abenavoli L, Rabahi N, Chretien Y, Andreani T, Johanet 
C, et al. Biochemical response to ursodeoxycholic acid and long-term 
prognosis in primary biliary cirrhosis. Hepatology. 2008;48(3):871–7.

	15.	 ter Borg PC, Schalm SW, Hansen BE, van Buuren HR, Dutch PBCSG. 
Prognosis of ursodeoxycholic acid-treated patients with primary biliary 
cirrhosis. Results of a 10-yr cohort study involving 297 patients. Am J 
Gastroenterol. 2006;101(9):2044–50.

	16.	 Nakamura M, Shimizu-Yoshida Y, Takii Y, Komori A, Yokoyama T, Ueki T, 
et al. Antibody titer to gp210-C terminal peptide as a clinical parameter 
for monitoring primary biliary cirrhosis. J Hepatol. 2005;42(3):386–92.

	17.	 Mytilinaiou MG, Meyer W, Scheper T, Rigopoulou EI, Probst C, Kout-
soumpas AL, et al. Diagnostic and clinical utility of antibodies against the 
nuclear body promyelocytic leukaemia and Sp100 antigens in patients 
with primary biliary cirrhosis. Clin Chim Acta. 2012;413(15–16):1211–6.

	18.	 Lammers WJ, van Buuren HR, Hirschfield GM, Janssen HL, Invernizzi P, 
Mason AL, et al. Levels of alkaline phosphatase and bilirubin are surro-
gate end points of outcomes of patients with primary biliary cirrhosis: 
an international follow-up study. Gastroenterology. 2014;147(6):1338–
49 e5; quiz e15.

	19.	 Tian S, Liu Y, Sun K, Zhou X, Ma S, Zhang M, et al. A nomogram based 
on pretreatment clinical parameters for the prediction of inadequate 
biochemical response in primary biliary cholangitis. J Clin Lab Anal. 
2020;34(11): e23501.

	20.	 Zaitsev A, Chelushkin M, Dyikanov D, Cheremushkin I, Shpak B, Nomie 
K, et al. Precise reconstruction of the TME using bulk RNA-seq and a 
machine learning algorithm trained on artificial transcriptomes. Cancer 
Cell. 2022;40(8):879–94 e16.

	21.	 Huang B, Lyu Z, Qian Q, Chen Y, Zhang J, Li B, et al. NUDT1 promotes 
the accumulation and longevity of CD103+ TRM cells in primary biliary 
cholangitis. J Hepatol. 2022;77(5):1311–24.

	22.	 Muller AL, Casar C, Preti M, Krzikalla D, Gottwick C, Averhoff P, et al. 
Inflammatory type 2 conventional dendritic cells contribute to murine 
and human cholangitis. J Hepatol. 2022;77(6):1532–44.

	23.	 Chatila WK, Kim JK, Walch H, Marco MR, Chen CT, Wu F, et al. Genomic 
and transcriptomic determinants of response to neoadjuvant therapy 
in rectal cancer. Nat Med. 2022;28(8):1646–55.

	24.	 Banales JM, Saez E, Uriz M, Sarvide S, Urribarri AD, Splinter P, et al. 
Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion 
exchanger 2 expression in biliary epithelium of patients with primary 
biliary cirrhosis. Hepatology. 2012;56(2):687–97.

	25.	 Nakagawa R, Muroyama R, Saeki C, Goto K, Kaise Y, Koike K, et al. 
miR-425 regulates inflammatory cytokine production in CD4(+) T 
cells via N-Ras upregulation in primary biliary cholangitis. J Hepatol. 
2017;66(6):1223–30.

	26.	 Hardie C, Green K, Jopson L, Millar B, Innes B, Pagan S, et al. Early 
molecular stratification of high-risk primary biliary cholangitis. EBio-
Medicine. 2016;14:65–73.

	27.	 Ostrowski J, Goryca K, Lazowska I, Rogowska A, Paziewska A, Dab-
rowska M, et al. Common functional alterations identified in blood 
transcriptome of autoimmune cholestatic liver and inflammatory 
bowel diseases. Sci Rep. 2019;9(1):7190.

	28.	 Oertelt S, Lian ZX, Cheng CM, Chuang YH, Padgett KA, He XS, et al. 
Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF-beta 
receptor II dominant-negative mice. J Immunol. 2006;177(3):1655–60.

	29.	 Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to 
spontaneous T cell differentiation and autoimmune disease. Immunity. 
2000;12(2):171–81.

	30.	 Fleming TR, Powers JH. Biomarkers and surrogate endpoints in clinical 
trials. Stat Med. 2012;31(25):2973–84.

	31.	 Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, 
et al. A placebo-controlled trial of obeticholic acid in primary biliary 
cholangitis. N Engl J Med. 2016;375(7):631–43.

	32.	 Oertelt S, Lian Z, Cheng C, Chuang Y, Padgett K, He X, et al. Anti-mito-
chondrial antibodies and primary biliary cirrhosis in TGF-beta receptor 
II dominant-negative mice. J Immunol. 2006;177(3):1655–60.

	33.	 Kennedy L, Carpino G, Owen T, Ceci L, Kundu D, Meadows V, et al. 
Secretin alleviates biliary and liver injury during late-stage primary 
biliary cholangitis via restoration of secretory processes. J Hepatol. 
2023;78(1):99–113.

	34.	 Carbone M, Sharp S, Flack S, Paximadas D, Spiess K, Adgey C, et al. 
The UK-PBC risk scores: Derivation and validation of a scoring system 
for long-term prediction of end-stage liver disease in primary biliary 
cholangitis. Hepatology. 2016;63(3):930–50.

	35.	 Lammers W, Hirschfield G, Corpechot C, Nevens F, Lindor K, Janssen 
H, et al. Development and validation of a scoring system to predict 
outcomes of patients with primary biliary cirrhosis receiving ursode-
oxycholic acid therapy. Gastroenterology. 2015;149(7):1804–12.e4.

	36.	 Zhang L, Shi T, Shi X, Wang L, Yang Y, Liu B, et al. Early biochemi-
cal response to ursodeoxycholic acid and long-term prognosis of 
primary biliary cirrhosis: results of a 14-year cohort study. Hepatology. 
2013;58(1):264–72.

	37.	 Barron-Millar B, Ogle L, Mells G, Flack S, Badrock J, Sandford R, et al. The 
serum proteome and ursodeoxycholic acid response in primary biliary 
cholangitis. Hepatology. 2021;74(6):3269–83.

	38.	 Sakamoto T, Morishita A, Nomura T, Tani J, Miyoshi H, Yoneyama H, et al. 
Identification of microRNA profiles associated with refractory primary 
biliary cirrhosis. Mol Med Rep. 2016;14(4):3350–6.

	39.	 Wunsch E, Krawczyk M, Milkiewicz M, Trottier J, Barbier O, Neurath M, 
et al. Serum autotaxin is a marker of the severity of liver injury and overall 
survival in patients with cholestatic liver diseases. Sci Rep. 2016;6:30847.

	40.	 Joshita S, Umemura T, Usami Y, Yamashita Y, Norman G, Sugiura A, et al. 
Serum autotaxin is a useful disease progression marker in patients with 
primary biliary cholangitis. Sci Rep. 2018;8(1):8159.

	41.	 Selmi C, Meda F, Kasangian A, Invernizzi P, Tian Z, Lian Z, et al. Experimen-
tal evidence on the immunopathogenesis of primary biliary cirrhosis. Cell 
Mol Immunol. 2010;7(1):1–10.

	42.	 Hu J, Yu Y. The function of thioredoxin-binding protein-2 (TBP-2) in different 
diseases. Oxid Med Cell Longev. 2018;2018:4582130.

	43.	 Qayyum N, Haseeb M, Kim MS, Choi S. Role of thioredoxin-interacting 
protein in diseases and its therapeutic outlook. Int J Mol Sci. 2021;22(5):2754.



Page 14 of 14Tian et al. Arthritis Research & Therapy          (2023) 25:186 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	44.	 Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 
inflammasome activation. Nature. 2011;469(7329):221–5.

	45.	 Frissen M, Liao L, Schneider KM, Djudjaj S, Haybaeck J, Wree A, et al. Bidi-
rectional role of NLRP3 during acute and chronic cholestatic liver injury. 
Hepatology. 2021;73(5):1836–54.

	46.	 Takenaka MC, Robson S, Quintana FJ. Regulation of the T cell response by 
CD39. Trends Immunol. 2016;37(7):427–39.

	47.	 Savio LEB, Robson SC, Longhi MS. Ectonucleotidase modulation of lym-
phocyte function in gut and liver. Front Cell Dev Biol. 2020;8: 621760.

	48.	 Asimah Q. Rafi-Janajreh DC, Rudolf Schmits, TakW. Mak, Randolph L. Gray-
son, D. Phillip Sponenberg, Mitzi Nagarkatti and Prakash S. Nagarkatti. Evi-
dence for the involvement of CD44 in endothelial cell injury and induc-
tion of vascular leak syndrome by IL-2. J Immunol. 1999;163(3):1619–27.

	49.	 Fu Q, Hou L, Xiao P, Guo C, Chen Y, Liu X. CD44 deficiency leads to 
decreased proinflammatory cytokine production in lung induced by 
PCV2 in mice. Res Vet Sci. 2014;97(3):498–504.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Integrative bioinformatics analysis and experimental validation of key biomarkers for risk stratification in primary biliary cholangitis
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Data collection
	Identification of differentially expressed genes (DEGs)
	Functional enrichment analysis
	Experimental animals
	Histopathology
	Clinical cohort for biomarker validation
	RNA extraction and gene expression analysis
	Statistical analysis

	Results
	Identification of DEGs between healthy controls and PBC patients
	Functional enrichment analysis
	Identification of DEGs between high- and low-risk PBC patients
	Selection of hub genes
	Validation of hub genes in animal models
	Development of a three-gene panel for screening high-risk PBC patients

	Discussion
	Conclusion
	Anchor 26
	Acknowledgements
	References


