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Abstract
Background This study aims to develop a hierarchical classification method to automatically assess the severity of 
knee osteoarthritis (KOA).

Methods This retrospective study recruited 4074 patients. Clinical diagnostic indicators and clinical diagnostic 
processes were applied to develop a hierarchical classification method that involved four sub-task classifications. 
These four sub-task classifications were the classification of Kellgren-Lawrence (KL) grade 0–2 and KL grade 3–4, KL 
grade 3 and KL grade 4, KL grade 0 and KL grade 1–2, and KL grade 1 and KL grade 2, respectively. To extract the 
features of clinical diagnostic indicators, four U-Net models were first used to segment the total joint space (TJS), 
the lateral joint space (LJS), the medial joint space (MJS), and osteophytes, respectively. Based on the segmentation 
result of TJS, the region of knee subchondral bone was generated. Then, geometric features were extracted based 
on segmentation results of the LJS, MJS, TJS, and osteophytes, while radiomic features were extracted from the knee 
subchondral bone. Finally, the geometric features, radiomic features, and combination of geometric features and 
radiomic features were used to construct the geometric model, radiomic model, and combined model in KL grading, 
respectively. A strict decision strategy was used to evaluate the performance of the hierarchical classification method 
in all X-ray images of testing cohort.

Results The U-Net models achieved relatively satisfying performances in the segmentation of the TJS, the LJS, the 
MJS, and the osteophytes with the dice similarity coefficient of 0.88, 0.86, 0.88, and 0.64 respectively. The combined 
models achieved the best performance in KL grading. The accuracy of combined models was 98.50%, 81.65%, 82.07%, 
and 74.10% in the classification of KL grade 0–2 and KL grade 3–4, KL grade 3 and KL grade 4, KL grade 0 and KL 
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Background
Knee osteoarthritis (KOA) is a common degenera-
tive disorder [1, 2] characterized by the loss of cartilage 
[3, 4], formation of osteophytes [3, 4], and alterations 
in the subchondral bone [4, 5]. The severity of KOA is 
often assessed using the Kellgren–Lawrence (KL) grad-
ing system [6, 7]. Currently, visual interpretation of X-ray 
images is the common approach in clinical practice for 
determining the KL grade in KOA diagnosis [8, 9]. How-
ever, this method relies on the clinician’s experience, 
which is subjective [8], time-consuming [10], and incon-
sistent among different clinicians [10, 11]. Therefore, the 
use of automatic KL grading based on X-ray images can 
provide an objective and reproducible diagnosis, while 
also improving diagnostic efficiency.

Previous studies have shown that deep learning is a 
promising approach for automatic KL grading using 
X-ray images. Chen et al. [12] conducted a ground-
breaking study that combined knee joint detection and 
classification to achieve automatic KL grading. In this 
study, the VGG-19 model with the proposed ordinal loss 
achieved the highest classification accuracy of 70.4%. In 
more recent studies, Zhang et al. [13] and Wang et al. 
[14] employed a similar method and achieved accura-
cies of 74.81% and 78%, respectively. These deep learning 
models utilized convolutional layers to extract complex 
and abstract features for diagnosing KL grades. However, 
the process of feature extraction can be influenced by the 
image background, leading to the omission of essential 
features. In the KL grading system, subchondral bone 
alterations, osteophyte formation, and joint space nar-
rowing are crucial factors for assessing the severity of 
KOA [15] and serve as clinical diagnostic indicators. By 
incorporating these indicators into the construction of an 
automatic KL grading model, the classification accuracy 
of KL grades can be improved.

Given that joint space narrowing is a crucial indi-
cator in KL grading, a pioneering study [16] focused 
on extracting the joint space width, which reflects the 
degree of joint space narrowing, to classify KL grades. 
However, this study neglected to consider the features 
of osteophytes and the subchondral bone, which also 
play significant roles in assessing the severity of KOA. 
The comprehensive inclusion of features extracted from 
the joint space, osteophytes, and subchondral bone can 

effectively reflect differences in KL grades and aid in their 
distinction.

Radiomics, a technique extensively employed in medi-
cal imaging studies [17–20], has shown promise for the 
diagnosis of KOA. Pioneering studies have demonstrated 
that radiomic features can be utilized as a potential 
method for diagnosing KOA. For example, Hirvasniemi 
et al. [21] constructed an elastic net model using radiomic 
features extracted from the tibial bone to classify knees 
with and without osteoarthritis, achieving an area under 
the receiver operating characteristic (ROC) curve (AUC) 
of 0.80. Similarly, Anifah et al. [22] extracted four types 
of features (contrast, correlation, energy, and homoge-
neity) and employed them to construct a self-organizing 
map, resulting in high classification accuracy for diag-
nosing KL grades 0 and 4. However, this study did not 
explore other radiomic features and had a limited num-
ber of radiographic images, necessitating the validation 
of radiomics methods for automatic KL grading.

The objective of this study was to develop a hierarchi-
cal classification method for automatically diagnosing the 
severity of KOA. Geometric and radiomic features were 
initially extracted through the segmentation results of 
U-Net models. Subsequently, geometric, radiomic, and 
combined models were constructed to classify the KL 
grades. We hypothesized that the hierarchical classifi-
cation method would be a feasible approach for distin-
guishing between different KL grades.

Methods
Overview
As depicted in Fig. 1, the overall procedure for automati-
cally grading KOA severity based on X-ray images con-
sists of three main components: segmentation, feature 
extraction, and classification using a hierarchical classifi-
cation method.

Participants
The present study adhered to the principles outlined in 
the Declaration of Helsinki and received approval from 
the West China Hospital, Sichuan University. Informed 
consent forms were signed by all participants included in 
the study.

A total of 5317 knee joint X-ray images from 
4074 patients (mean ± standard deviation (SD) 
age = 52.08 ± 14.35 years; 1268 males) between July 2009 

grade 1–2, and KL grade 1 and KL grade 2, respectively. For all X-ray images of the testing cohort, the accuracy of the 
hierarchical classification method was 65.98%.

Conclusion The hierarchical classification method developed in the current study is a feasible approach to assess the 
severity of KOA.

Keywords Knee osteoarthritis, U-Net, Machine learning, X-ray image
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and April 2021 were analyzed in the current study. 
Among the 4074 patients, 2848 had only one X-ray 
image, while the remaining patients had multiple X-ray 
images. The training cohort comprised 80% of the 
patients, randomly selected (3259 patients, 4247 radio-
graphs), while the remaining patients formed the testing 
cohort (815 patients, 1070 radiographs). All X-ray images 
from a patient were included in only one cohort. Table 1 
provides an overview of the demographic characteristics 
of the training and testing cohorts.

All patients included in the study met the following 
inclusion criteria: (1) availability of clinical information 
and (2) availability of images. Patients who had (1) miss-
ing images, (2) low image quality, (3) incomplete clini-
cal information, or (4) a history of knee joint trauma or 
tumor were excluded.

Image acquisition
Each patient in the study underwent radiography using 
a digital radiography system. The imaging parameters 
were standardized, with a fixed tube voltage of 50 kV, an 

exposure condition of 0.8 mAs, a source-film distance 
of 60  cm, and an exposure index ranging from 1400 to 
1800. Given that the Rosenberg view is more sensitive 
than Antero-posterior view in identifying the joint space 
narrowing which played an important role in KL grad-
ing [23], the field of the knee radiograph encompassed 
the entire knee joint, leg, and thigh was scanned using 
Rosenberg view.

Image reading and manual segmentation
Lateral joint space (LJS), medial joint space (MJS), total 
joint space (TJS), and osteophyte were manually seg-
mented using ITK-SNAP software [24], respectively. The 
manual segmentation was performed by three senior 
orthopedic doctors who have more than ten years’ expe-
rience in X-ray image reading and clinical practice. If 
there was inconsistency in the manual segmentation, a 
final decision was reached through discussion among 
three senior doctors. In addition, these three doctors 
made diagnosis of KL grade of KOA based on the inter-
pretation of the X-ray images. To ensure accuracy, three 

Table 1 Demographic characteristics of training and testing cohorts
Characteristics Training cohort

(n = 3259)
Testing cohort
(n = 815)

Total
(n = 4074)

Age (year), mean ± SD 52.10 ± 14.33 52.02 ± 14.41 52.08 ± 14.35
Gender (male/female) 1009 / 2250 259 / 556 1268 / 2806
Number of X-ray images 4247 1070 5317
KL grades
0 274 66 340
1 1214 275 1489
2 1686 451 2137
3 714 172 886
4 359 106 465
KL: Kellgren–Lawrence

SD: Standard deviation

Fig. 1 Overview of the automatic knee osteoarthritis severity grading based on X-ray images. The total joint space, the lateral joint space, the medial 
joint space, and osteophyte were segmented using U-Net model, respectively. The mask of subchondral bone was generated based on the segmentation 
result of total joint space. A hierarchical classification method was employed to assessment KOA severity using geometric and radiomic features. KOA: 
knee osteoarthritis. KL: Kellgren-Lawrence
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doctors independently reviewed all the acquired X-ray 
images. The KL grade, which assesses joint space and 
osteophytes in KOA, was determined based on the X-ray 
images [25]. In cases where there was inconsistency in 
the KL grade assigned by the doctors, a final decision was 
reached through discussion among them. These three 
senior orthopedic doctors were blinded to the patients’ 
clinical information during manual segmentation and KL 
grade diagnosis.

Segmentation based on U-Net model
To reduce the time-consuming and labor-intensive pro-
cess of precise segmentation for doctors, four U-Net 
models (as depicted in Fig. 2) were used to segment LJS, 
MJS, TJS, and osteophyte, respectively. The U-Net [26] 
architecture consists of an encoder and a decoder. The 
encoder includes four downsample blocks. A downsam-
ple block consists of two convolutional layers, two batch 
normalization layers, a rectified linear unit (ReLU), and a 
max-pooling layer. The decoder, on the other hand, com-
prises four upsample blocks. A upsample block consists 
of a transpose convolutional layer, two convolutional 
layers, two batch normalization layers, and a ReLU. This 
structure is constructed to generate the final segmenta-
tion output. Two dropout2d layers were added between 
the encoder and decoder to prevent overfitting.

To normalize the X-ray images, the following equation 
was applied:

 
y =

x−min

max − min

where x  and y  represent the original and normalized 
intensity of each pixel, respectively. Further, min  and 
max  denote the minimum and maximum value of the 
intensity of all pixels in the corresponding original X-ray 
image, respectively. Due to the large size of the X-ray 
image (as depicted in Fig. 2), both the normalized X-ray 
image and the corresponding manually segmented masks 
were cropped. During cropping, a smallest rectangle that 
contained LJS, MJS, TJS, and osteophyte was first gener-
ated. Then, a large rectangle was generated by expanding 
50 pixels outward from the edges of the smallest rect-
angle. Thus, the normalized X-ray image and the corre-
sponding manually segmented mask were cropped along 
the boundary of the large rectangle.

Given that the size of cropped normalized X-ray image 
and manually segmented mask fed into the U-Net model 
was not consistent between patients, spline interpolation 
[27–29] was used to resize the cropped normalized X-ray 
image and manually segmented mask. Thus, the size of 
the cropped normalized X-ray images and correspond-
ing cropped manual segmentation masks was changed 
to 224 × 512, and then these cropped normalized X-ray 
images and corresponding cropped manual segmenta-
tion masks were used to construct the U-Net model. To 
validate the constructed U-Net model, approximately 
one-fourth of the patients randomly selected from the 
training cohort were designated as the validation cohort 
(815 patients, 1041 X-ray images), while the remaining 
patients were used for training (2444 patients, 3206 X-ray 
images). Each patient’s X-ray images were included in 
only one cohort.

The U-Net model was trained using the cropped nor-
malized X-ray images and their corresponding cropped 

Fig. 2 The flowchart of the segmentation using the U-Net models. Four U-Net models were used to segment the total joint space, the lateral joint space, 
the medial joint space, and the osteophyte, respectively
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manual segmentation masks from the training cohort. 
Subsequently, the cropped normalized X-ray images 
and their corresponding cropped manual segmenta-
tion masks from the validation cohort were employed 
to select the best-performing U-Net model. Finally, the 
cropped normalized X-ray images and their correspond-
ing cropped manual segmentation masks from the test-
ing cohort were used to evaluate the performance of the 
selected U-Net model. Segmentation result was obtained 
based on constructed U-Net model. The size of the seg-
mentation result was restored to the size of the corre-
sponding original cropped manual segmentation mask.

For the osteophyte segmentation, X-ray images without 
osteophyte were excluded from the training, validation, 
and testing cohorts. Thus, cropped normalized X-ray 
images with osteophyte in training cohort were used to 
construct the U-Net model, and cropped normalized 
X-ray images with osteophyte in validation cohort were 
used to select the best-performing U-Net model. The 
cropped normalized X-ray images with osteophyte from 
the testing cohort were used to evaluate the performance 
of the selected U-Net model. In addition, Supplementary 
Method1 provided details of another U-Net model that 
constructed using total training cohort including X-ray 
images without osteophyte to segment osteophyte.

The U-Net models were constructed using PyTorch on 
a Windows computer. The GPU used was an NVIDIA 
Quadro RTX 5000 with 16 GB of memory, while the 

CPU was an Intel Core i9-9980XE with 128 GB of mem-
ory. The training process involved setting the number of 
epochs to 100, the batch size to 4, and the initial learn-
ing rate to 0.0001. During training, the learning rate was 
updated every 20 epochs by dividing the previous learn-
ing rate by 10. The optimization of the U-Net model was 
performed using adaptive moment estimation (Adam). 
Further details regarding the evaluation of the U-Net 
model can be found in Supplementary Method2.

Postprocessing for segmentation
After LJS, MJS, TJS, and osteophyte were segmented, all 
restored segmentation results were generated. As Fig. 3A 
shown, we found that some evident false positive regions 
existed in some segmentation results. To avoid the effect 
on feature extraction, these false positive regions were 
removed. Specifically, for each patient, after the restored 
segmentation results obtained, the number of pixels of 
connected regions in the restored segmentation results 
was calculated. For the TJS, the regions with the number 
of pixels less than 2500 were removed. For the LJS and 
MJS, only the largest connected region was retained. For 
the osteophyte, the opening was used to remove false 
positive regions. Thus, the pixel values of these false posi-
tive areas were zeroed (Fig. 3B) in the postprocessed seg-
mentation results.

Fig. 3 Examples of the false positive regions in the restored segmentation and postprocessed results. A: The restored segmentation results of U-Net 
models were not performed postprocessing. The area marked by the red arrow was a false positive area. B: The restored segmentation results of U-net 
models were performed postprocessing
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Geometric features extraction
In accordance with the current KL grading system, joint 
space narrowing and osteophyte formation are crucial 
factors in diagnosing KL. For this study, 27 geometric 
features were extracted from the postprocessed seg-
mentation results of LJS, MJS, TJS, and osteophytes. 
These geometric features encompassed width (n = 9), 
area (n = 5), range (n = 6), ratio (n = 6), number (n = 1). For 
a detailed overview of these geometric features, please 
refer to Supplementary Method3.

Radiomic feature extraction
The original X-ray images were used to extract radiomic 
features. To extract radiomic features from the knee 
subchondral bone, a region of interest was generated by 
expanding 20 pixels outward from the upper and lower 
edges of postprocessed segmentation results of TJS. The 
open-source pyradiomics package [30] was utilized to 
extract radiomic features from the original X-ray images. 
Prior to feature extraction, the original X-ray images 
underwent preprocessing using seven filters: Square 
Root, Wavelet, Square, Gradient, Logarithm, 2D Local 
Binary Pattern, and Exponential. Shape, textural and 
first-order features were extracted from both the origi-
nal and preprocessed X-ray images, resulting in a total of 
1032 features extracted from each X-ray image. Detailed 
information about these radiomic features can be found 
in the pyradiomics documentation  (   h t  t p s  : / / p  y r  a d i  o m i  c 
s . r  e a  d t h e d o c s . i o / e n / l a t e s t / f e a t u r e s . h t m l     ) . For a detailed 
overview of the procedure of feature extraction using 
Pyradiomics, please refer to Supplementary Method4.

Hierarchical classification method
Figure 4 illustrates the hierarchical classification method 
developed for predicting the severity of KOA. This 
method involves four sub-task classifications. First, low-
level KL grades (KL grade 0–2) and high-level KL grades 
(KL grade 3–4) are classified. Then, the classification of 

KL grade 0 versus KL grade 1–2, and the classification of 
KL grade 3 versus KL grade 4 are performed. Finally, KL 
grades 1 and 2 are assigned to their respective groups.

In the hierarchical classification method, the geomet-
ric, radiomic, and combined models were constructed 
using geometric features, radiomic features, and the 
combination of geometric and radiomic features, respec-
tively. Figure  5 provides an illustration of these models, 
which were used to compare the performance of different 
feature sets in classifying KL grades. Further details on 
the evaluation of the classification models can be found 
in Supplementary Method2.

Geometric model construction
In this study, logistic regression (LR) models with L2 
regularization (LR_L2), LR with elastic-net regularization 
(LR_EN), support vector machines (SVM), random for-
est (RF) and extreme gradient boosting (XGBoost) were 
evaluated to determine the best classifier for predict-
ing the severity of KOA based on clinical and geometric 
features.

Figure  5A demonstrates the construction of the geo-
metric model, which utilized clinical features (age and 
gender) and geometric features. Feature selection was 
performed using Pearson’s chi-square test for discrete 
features (gender) and Student’s t-test for continuous 
features. Subsequently, the feature values in the training 
cohort were scaled to a range of 0 to 1 based on the mini-
mum and maximum values of features in the training 
cohort. The same scaling was applied to the correspond-
ing features in the testing cohort. The least absolute 
shrinkage and selection operator (LASSO) was employed 
for further feature selection. A random undersampling 
method [31] (namely, RandomUnderSampler [31, 32]) 
was employed in the training cohort to overcome the 
problem of the imbalance between majority and minority 
classes.

Fig. 4 The structure of hierarchical classification method. In the hierarchical classification method, there were four sub-task classifications. The low-level 
KL grades (i.e., KL grade 0–2) and the high-level KL grade (i.e., KL grade 3–4) were first classified. Then, the classification of the KL grade 0 and KL grade 
1–2, and the classification of the KL grade 3 and KL grade 4 were performed. Last, the KL grade 1 and the KL grade 2 were classified. OA: Osteoarthritis. 
KL: Kellgren-Lawrence

 

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html


Page 7 of 14Pan et al. Arthritis Research & Therapy          (2024) 26:203 

Optimal hyper-parameters for the classifiers were 
determined through a grid search with 10-fold cross-
validation (CV) in the training cohort. For LR_L2, the 
regularization parameter λ was selected from 21 values 

[2− 10, 2− 9, …, 29, 210]. For LR_EN, the λ and �1 ratios 
were selected from 21 values [2− 10, 2− 9, …, 29, 210] and 
10 values [0.1, 0.2, …, 0.9, 1], respectively. For SVM, 
the C parameter was selected from 21 values [2− 10, 2− 9, 

Fig. 5 Schematic overview of training and testing in the geometric model, radiomic model, and combined model. A: The flowchart of the construc-
tion of the geometric model. B: The flowchart of the construction of the radiomic model. C: The flowchart of the construction of the combined model. 
LASSO: least absolute shrinkage and selection operator. GradSearchCV (10): grid search with 10-fold cross-validation. T test: Student’s t-test. Chi-Square 
test: Pearson’s Chi-Square test
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…, 29, 210]. For RF, the number of estimators and maxi-
mum depth was selected from 21 values [1, 5, 10, 15, …, 
95, 100] and 19 values [10, …,95, 100], respectively. For 
XGBoost, the number of estimators, maximum depth 
and learning rate was selected from 20 value [5, 10, 15, 
…, 95, 100], 20 values [5, 10, 15, …, 95, 100], and 4 val-
ues [0.2, 0.1, 0.01, 0.001], respectively. Finally, classifiers 
with their corresponding optimal hyper-parameters were 
constructed using the undersampled training cohort, and 
these classifiers were then tested using the testing cohort. 
Based on the highest AUC of training cohort, the best 
geometric model was selected in each sub-task classifica-
tion. The Scikit-learn library (version 0.23.2) was utilized 
for implementing the classification models.

Radiomic model construction
In the current study, LR_L2, LR_EN, SVM, RF and 
XGBoost models were evaluated to determine the best 
classifier for predicting the severity of KOA based on 
radiomic features.

Figure  5B illustrates the construction of the radiomic 
model, which utilizes radiomic features. The process of 
constructing the radiomic model is similar to that of the 
geometric model. To weaken the multicollinearity, the 
Pearson’s correlation analysis [33, 34] was used before 
radiomic features scaling. Based on Pearson’s correlation 
analysis, these radiomic features with absolute Pearson’s 
correlation coefficient lager 0.8 were removed. In addi-
tion, LASSO was employed for further feature selection 
prior to applying RandomUnderSampler. After the LR_
L2, LR_EN, SVM, RF and XGBoost were constructed, the 
best radiomic model was selected based on the highest 
AUC of training cohort in each sub-task classification.

Combined model construction
As depicted in Fig. 5C, based on the highest AUC value of 
the training cohort, the geometric features from the best 
geometric model and the radiomic features from the best 
radiomic model were stacked together to form combined 
features. These combined features were obtained before 
performing RandomUnderSampler in their respec-
tive models. LASSO was employed for feature selection 
prior to applying RandomUnderSampler. Optimal hyper-
parameters for the classifiers were determined through a 
grid search with 10-fold CV in the training cohort. The 

hyper-parameters setting was consistent with those of 
the geometric model. LR_L2, LR_EN, SVM, and RF mod-
els were evaluated to determine the best classifier for 
predicting the severity of KOA based on the combined 
features.

Hierarchical classification method evaluation
To evaluate the hierarchical classification method, a strict 
decision strategy was employed in this study. Accord-
ing to this strategy, if all four sub-task classifications are 
accurately predicted, the output of the hierarchical clas-
sification method was considered a correct prediction. 
Otherwise, it was considered an incorrect prediction.

Significant features selection
For each sub-task classification in the hierarchical classi-
fication method, features that play important roles in the 
corresponding classification task were extracted based on 
the weights of the combined model. Thus, we first ranked 
all weights according to their absolute values and then 
selected the top 10% of weights. Features corresponding 
to these top 10% of weights were selected as significant 
features, which play important roles in the classification 
task.

Results
Patient demographics
Table  1 summarizes the patient characteristics. A total 
of 5317 knee joint X-ray images from 4074 patients were 
analyzed in the current study. Among the 5317 knee joint 
X-ray images, 340 were confirmed as KL grade 0, 1489 as 
KL grade 1, 2137 as KL grade 2, 886 as KL grade 3, and 
465 as KL grade 4.

Segmentation on knee osteoarthritis
Table 2 provides an overview of the performance of the 
U-Net models. For TJS, the Dice similarity coefficient 
(Dice) values were 0.90, 0.89, and 0.88 in the training, 
validation, and testing cohorts, respectively. For LJS, 
the Dice values were 0.89, 0.86, and 0.86 in the training, 
validation, and testing cohorts, respectively. For MJS, 
the Dice values were 0.90, 0.88, and 0.88 for the training, 
validation, and testing cohorts, respectively. Regarding 
the segmentation of osteophytes, the Dice values were 
0.75, 0.64, and 0.64 for the training, validation, and test-
ing cohorts, respectively. Examples of the U-Net models’ 
outputs can be observed in Fig.  6. In addition, Supple-
mentary Result1 provided the performance of U-Net 
model that was constructed using training cohort includ-
ing X-ray images without osteophyte.

Classification of KL grades
Table  3 presents the performances of the geometric, 
radiomic, and combined models for KL grading. The 

Table 2 Results of segmentation
Training cohort Validation 

cohort
Test-
ing 
cohort

Total Joint Space 0.90 0.89 0.88
Lateral Joint Space 0.89 0.86 0.86
Medial Joint Space 0.90 0.88 0.88
Osteophyte 0.75 0.64 0.64
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Table 3 Performance of geometric, radiomic, and combined models at KL grading
Classification Model name Accuracy Sensitivity Specificity AUC
Grade 0–2
VS
Grade 3–4

Geometric Model 98.41% 94.24% 99.87% 0.990
Radiomic Model 75.14% 73.74% 75.63% 0.852
Combined Model 98.50% 94.24% 100.00% 0.992

Grade 3
VS
Grade 4

Geometric Model 81.29% 85.85% 78.49% 0.911
Radiomic Model 72.66% 77.36% 69.77% 0.806
Combined Model 81.65% 85.85% 79.07% 0.909

Grade 0
VS
Grade 1–2

Geometric Model 81.57% 81.68% 80.30% 0.872
Radiomic Model 77.65% 77.55% 78.79% 0.879
Combined Model 82.07% 82.23% 80.30% 0.893

Grade 1
VS
Grade 2

Geometric Model 73.00% 73.61% 72.00% 0.805
Radiomic Model 69.01% 68.29% 70.18% 0.760
Combined Model 74.10% 74.94% 72.73% 0.816

Fig. 6 Examples of segmentation results in four U-Net models. A: the segmentation result of the total joint space, B: the segmentation result of the lateral 
joint space, C: the segmentation result of the medial joint space, D: the segmentation result of the osteophyte. The rad: the mask segmented manually by 
doctors. The green: the mask segmented by the U-Net model

 



Page 10 of 14Pan et al. Arthritis Research & Therapy          (2024) 26:203 

results indicate that the combined model outperformed 
both the geometric and radiomic models. The accuracies 
of the combined model were 98.50% for the classification 
of low-level grades (KL grades 0–2) and high-level grades 
(KL grades 3–4), 81.65% for KL grades 3 and 4, 82.07% 
for KL grades 0 and 1–2, and 74.10% for KL grades 1 and 
2. The ROC curves for these classification tasks can be 
seen in Fig. 7.

Predictive performance of the hierarchical classification 
method
Regarding the hierarchical classification method, the 
accuracies of the geometric, radiomic, and combined 
models were 63.36%, 40.84%, and 65.98%, respectively.

Table 4 Significant features corresponding to these top 10% of 
weights in four sub-task classifications
Classification Features name
Grade 0–2 VS Grade 3–4 Mean area of all osteophytes

Number of osteophytes
Grade 3 VS Grade 4 Area of all osteophytes

Min range of joint space width of TJS
Grade 0 VS Grade 1–2 Original_shape2D_Elongation
Grade 1 VS Grade 2 Mean joint space width of MJS

Original_shape2D_Elongation

Fig. 7 The performance of the four sub-task classifications. A: The predictive performance in the classification of the low-level KL grade and high-level KL 
grade. B: The classification of the KL grade 3 and KL grade 4. C: The classification of the KL grade 0 and KL grade 1–2. D: The classification of the KL grade 
1 and KL grade 2. KL: Kellgren-Lawrence. ROC: the receiver operating characteristic curve. AUC: the area under the ROC curve
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Significant features in the hierarchical classification 
method
Table 4 presents the significant features corresponding to 
these top 10% of weights in four sub-task classifications. 
The significant features were listed in the Table 4 in order 
of absolute weight values. Mean area of all osteophytes 
and number of osteophytes played important roles in 
the classification of low-level grades and high-level 
grades. Area of all osteophytes and Min range of joint 
space width of TJS played important roles in the classi-
fication of KL grades 3 and 4. Original_shape2D_Elonga-
tion played an important role in the classification of KL 
grades 0 and 1–2. Mean joint space width of MJS and 
Original_shape2D_Elongation played important roles in 
the classification of KL grades 1 and 2.

Discussion
In this study, we developed a hierarchical classification 
method that incorporated segmentation of knee joint tis-
sues, aiming to replicate the clinical diagnostic process 
and enhance the accuracy of KOA severity diagnosis. 
Initially, we observed satisfactory segmentation perfor-
mance of the U-Net models for TJS, LJS and MJS with 
Dice values of 0.88, 0.86, and 0.88, respectively. Subse-
quently, geometric features were extracted from the seg-
mented masks, while radiomic features were extracted 
from the subchondral bone of the knee joint. Finally, we 
constructed geometric models based on geometric fea-
tures, radiomic models based on radiomic features, and 
combined models that integrated both types of features. 
These models exhibited high accuracy in classifying dif-
ferent levels of KOA severity. Notably, the combined 
model demonstrated superior classification performance 
compared to the geometric and radiomic models.

This study revealed the significance of geometric 
features in the combined model. Geometric features 
extracted in this study capture information about the 
knee joint space and osteophytes. Therefore, accurate 
segmentation of the knee joint space and osteophytes is 
crucial for precise extraction of geometric features. The 
U-Net model employed in this study demonstrated sat-
isfactory performance in segmenting TJS, LJS and MJS. 
This segmentation performance facilitated the calcu-
lation of joint space width which is a critical factor in 
assessing the severity of KOA [35, 36]. The distinct cal-
cium content between the knee joint space and the sur-
rounding bones, such as the tibia and femur, leads to 
notable differences in radiation absorption [10, 37]. As a 
result, the knee joint space appears distinct from the tibia 
and femur in X-ray images. The U-Net model effectively 
captures the distinguishing characteristics between the 
knee joint space and knee bones, enhancing segmenta-
tion performance. Previous studies [38–40] have also 
utilized segmentation models to segment the tibia and 

femur bones. While segmentation of these bones aids in 
calculating joint space width, direct segmentation of the 
joint space enables straightforward calculation of dif-
ferent features for assessing joint space narrowing, as 
achieved in the present study.

The segmentation performance of osteophytes was 
comparatively lower than that of the knee joint space in 
this study. Osteophyte, being a type of bone with high 
calcium levels, appear as white areas in X-ray images. 
They exhibit minimal differentiation from other types of 
bone, such as the tibia and femur, making their identifi-
cation challenging using segmentation models. Further-
more, the size of osteophytes is typically small compared 
to the total knee joint space, which may lead to the U-Net 
model struggling to extract relevant features for osteo-
phyte segmentation. Consequently, although the U-Net 
model achieved favorable results in segmenting osteo-
phytes, its performance was relatively lower compared to 
that of knee joint space segmentation.

In clinical practice, manual segmentation of the knee 
joint space and osteophytes relies on visual assessment. 
However, this approach of manual segmentation is time-
consuming, labor-intensive, and subject to inter-phy-
sician variability based on their expertise and clinical 
experience. The proposed method in this study not only 
yielded excellent segmentation outcomes but also facili-
tated accurate classification of different KL grades for 
KOA severity based on these segmentation results. This 
suggests that the segmentation method employed sig-
nificantly reduces the workload of clinicians during X-ray 
imaging and mitigates inter-physician inconsistency 
in review results. Particularly, it effectively assists less 
experienced physicians in performing precise knee tis-
sue segmentation, enabling accurate assessment of KOA 
severity.

The current study found that both sub-task classifica-
tions and hierarchical classification method of combined 
model outperform that of geometric and radiomic mod-
els. Wang et al. [14] employed deep learning model to 
automatically diagnose the severity of knee osteoarthri-
tis. Compared with study of Wang et al. [14], our com-
bined model achieved higher accuracy in identifying the 
KL grade 2 and KL grade 4. The combined model fused 
geometric and radiomic features which quantified joint 
space narrowing and osteophyte formation from multiple 
perspectives. Thus, the geometric and radiomic features 
can provide more comprehensive information for com-
bined model, which may be a potential reason for better 
performance in identifying the KL grade 2 and 4 in com-
bined model.

However, the study of Wang et al. [14] achieved 
higher accuracy than that of the hierarchical classifica-
tion method. Wang et al. [14] employed an end-to-end 
method that could directly output the prediction of KL 
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grade. In the hierarchical classification method, all four 
binary classification tasks were accurately predicted, 
the output of the hierarchical classification method was 
considered a correct prediction, which was a very strict 
decision strategy. In addition, Wang et al. [14] grouped 
KL Grade 0 and 1 into one category and included more 
X-ray images. Thus, the strict decision strategy, more cat-
egories and relatively small number of X-ray images may 
be potential reasons for relatively low in the performance 
of hierarchical classification method.

In addition, the current study focused on extracting 
geometric and radiomic features from segmented knee 
joint tissues to replicate the clinical diagnostic logic of KL 
grades and achieve accurate prediction of KOA severity, 
particularly in the classification of higher KL grades (KL 
0–2 vs. KL 3–4). Invasive treatments, such as total knee 
replacement [41], are often required for patients with KL 
grades 3 and 4, while conservative treatments, including 
weight loss and pharmacotherapy [42], are more suitable 
for patients with KL grades 1–2. Thus, the hierarchical 
classification method developed in this study can assist 
clinicians in making personalized treatment decisions.

The study utilized various geometric features to quan-
tify the degree of knee joint space narrowing and osteo-
phyte formation. The findings indicated that these 
geometric features play crucial roles in predicting the 
severity of KOA. This suggests that the knee joint space 
and osteophyte formation can serve as significant indi-
cators for diagnosing KL grades [25], and the geometric 
features extracted from these areas can be potential bio-
markers for assessing the severity of KOA. Moreover, the 
study revealed that the geometric features extracted from 
the knee joint space and osteophytes have distinct roles 
in classifying different KL grades. Specifically, geometric 
features based on osteophytes are particularly important 
in distinguishing between low and high KL levels and 
between the two high levels, while geometric features 
based on the joint space are crucial in classifying low KL 
grades, namely, KL grade 1 and grade 2. The observed dif-
ference in the roles of different knee tissues in the diag-
nosis of various KL grades aligns with the progression of 
KOA. As KOA advances from mild to severe stages, the 
joint space gradually narrows, while the size and number 
of osteophytes increase [8]. Consequently, the character-
istics of the joint space and osteophytes assume crucial 
roles in the diagnosis of mild and severe KOA, respec-
tively. The findings from this study offer valuable insights 
for clinicians to adopt tailored diagnostic strategies based 
on the specific condition of each patient.

Furthermore, as KOA progresses, the narrowing of the 
knee joint space is often accompanied by subchondral 
bone alterations [25]. Therefore, features extracted from 
the subchondral bone indirectly reflect the extent of knee 
joint space narrowing. The Original_shape2D_Elongation 

played an important role in classifying low KL grades. 
Additionally, in comparison to the geometric model that 
solely utilizes geometric features, the combined model 
incorporating radiomic features from the subchondral 
bone and geometric features from the knee joint space 
and osteophytes exhibited improved accuracy. The com-
bined model effectively harnesses and integrates multiple 
levels of information present in X-ray images, thereby 
assisting clinicians, particularly those with less experi-
ence, in making accurate diagnoses of KOA.

There are several limitations in this study. First, the 
number of X-ray images between KL grades was imbal-
ance, especially, the number of X-ray image with KL 
grade 0 was too small. In future work, we will collect as 
many as possible X-ray images to overcome the problem 
of imbalanced sample sizes between KL grades. Second, 
the risk of overfitting was existed in model construc-
tion. To avoid the possibility of overfitting, we will col-
lect more X-ray images, particularly the X-ray images 
from multiple institutes, to train model which can help 
the model generalize better. Third, the performance for 
clinical application was insufficient. In future work, we 
will include more clinical features and integrate features 
extracted by CNN into combined model to improve the 
performance of the hierarchical classification method.

Conclusion
This study demonstrated the feasibility of the hierarchi-
cal classification method as a viable approach for assess-
ing the severity of KOA. The findings suggest that this 
method holds potential for clinical application, providing 
an objective means to diagnose the KL grade.
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