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Abstract 

Background  The modified Rodnan skin score (mRSS), a measure of systemic sclerosis (SSc) skin thickness, is agnostic 
to inflammation and vasculopathy. Previously, we demonstrated the potential of neural network-based digital pathol-
ogy applied to SSc skin biopsies as a quantitative outcome. Here, we leverage deep learning and histologic analyses 
of clinical trial biopsies to decipher SSc skin features ‘seen’ by artificial intelligence (AI).

Methods  Adults with diffuse cutaneous SSc ≤ 6 years were enrolled in an open-label trial of belumosudil [a Rho-asso-
ciated coiled-coil containing protein kinase 2 (ROCK2) inhibitor]. Participants underwent serial mRSS and arm biopsies 
at week (W) 0, 24 and 52. Two blinded dermatopathologists scored stained sections (e.g., Masson’s trichrome, hema-
toxylin and eosin, CD3, α-smooth muscle actin) for 16 published SSc dermal pathological parameters. We applied our 
deep learning model to generate QIF signatures/biopsy and obtain ‘Fibrosis Scores’. Associations between Fibrosis 
Score and mRSS (Spearman correlation), and between Fibrosis Score and mRSS versus histologic parameters [odds 
ratios (OR)], were determined.

Results  Only ten patients were enrolled due to early study termination, and of those, five had available biopsies due 
to fixation issues. Median, interquartile range (IQR) for mRSS change (0–52 W) for the ten participants was -2 (-9—7.5) 
and for the five with biopsies was -2.5 (-11—7.5). The correlation between Fibrosis Score and mRSS was R = 0.3; 
p = 0.674. Per 1-unit mRSS change (0–52 W), histologic parameters with the greatest associated changes were 
(OR, 95% CI, p-value): telangiectasia (2.01, [(1.31—3.07], 0.001), perivascular CD3 + (0.99, [0.97—1.02], 0.015), and % 
of CD8 + among CD3 + (0.95, [0.89—1.01], 0.031). Likewise, per 1-unit Fibrosis Score change, parameters with greatest 
changes were (OR, p-value): hyalinized collagen (1.1, [1.04 – 1.16], < 0.001), subcutaneous (SC) fat loss (1.47, [1.19—
1.81], < 0.001), thickened intima (1.21, [1.06—1.38], 0.005), and eccrine entrapment (1.14, [1—1.31], 0.046).

Conclusions  Belumosudil was associated with non-clinically meaningful mRSS improvement. The histologic features 
that significantly correlated with Fibrosis Score changes (e.g., hyalinized collagen, SC fat loss) were distinct from those 
associated with mRSS changes (e.g., telangiectasia and perivascular CD3 +). These data suggest that AI applied to SSc 
biopsies may be useful for quantifying pathologic features of SSc beyond skin thickness.

*Correspondence:
Monique Hinchcliff
Monique.hinchcliff@yale.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13075-025-03508-9&domain=pdf


Page 2 of 11Gunes et al. Arthritis Research & Therapy           (2025) 27:85 

Keywords  Systemic sclerosis, Scleroderma, Modified Rodnan skin score, Deep Neural Network, AlexNet, Belumosudil, 
Outcome measure, Outcomes, Artificial intelligence, Dermal fibrosis, Skin fibrosis

Background
Systemic sclerosis (SSc) is a rare chronic autoimmune 
disease whose pathogenesis involves fibrosis, inflamma-
tion, and vasculopathy including vascular pruning and 
intimal thickening [1]. Systemic sclerosis subsets [limited 
cutaneous and diffuse cutaneous (dc)] are defined using 
the modified Rodnan skin score (mRSS), a semi-quan-
titative assessment of dermal thickness [0 (normal) to 3 
(hidebound) for 17 body sites (range of 0 −51)] [2]. The 
score initially included assessment of 26 body areas, but 
nine (neck, upper back, lower back, and bilateral toes, 
shoulders and breasts) were dropped due to high inter-
rater variation [3]. The construct validity of the mRSS is 
supported by the strong correlation (r = 0.81) between 
forearm skin scores and dry weights of adjacent 7-mm 
punch biopsies [3]. The mRSS is currently the gold stand-
ard for assessing skin thickness in patients with SSc [4, 
5]. However, despite promising pre-clinical data, results 
of clinical trials whose primary endpoint is the mRSS 
have been uniformly negative [6–21]. We wondered if 
negative trial results could be due, at least in part, to the 
mRSS being an incomplete readout of clinical changes as 
opposed to ineffective therapies.

Belumosudil, an inhibitor of Rho-associated coiled-
coil containing protein kinase 2 (ROCK2), was approved 
by the US Food and Drug Administration in 2021 for 
chronic graft-versus-host-disease (cGVHD) treatment 
[22], a disease with similar histopathological features 
as SSc. Belumosudil downregulates proinflammatory 
responses by inhibiting signal transduction and activa-
tion of transcription 3 (STAT3) phosphorylation, upreg-
ulating STAT5 phosphorylation, and shifting T helper 
17 (Th17)/T regulatory (Treg) balance towards the Treg 
phenotype: all mechanisms that should improve SSc skin 
disease [23].

Artificial intelligence technology has been successfully 
applied in many fields including biomedical research 
and medical education to name a few [24, 25]. For exam-
ple, AI has been shown to aid diagnosis, reduce medi-
cal errors, and improve medical education [26, 27]. We 
previously subjected forearm skin biopsies to AI meth-
ods for skin disease measurement in patients with SSc 
[28]. Briefly, we applied a pre-trained deep neural net-
work (DNN AlexNet) to 100 randomly selected dermal 
image patches (~ 0.16 mm2) per biopsy and generated 
4,096 quantitative image features (QIFs) per image patch 
(409,600 QIF/biopsy). We used QIF signatures/biopsy 
to develop two regression models: 1) to predict whether 

a biopsy was from an SSc patient versus a healthy con-
trol (HC), and 2) to predict the mRSS (the output of this 
model is termed ‘Fibrosis Score’). The present research 
goal was to gain insights into the SSc histopathology fea-
tures quantified by the DNN algorithm.

Here, we stained skin biopsies from belumosudil clini-
cal trial participants, applied the AlexNet DNN algo-
rithm, and generated Fibrosis Scores for each biopsy. 
Concurrently, we applied additional stains to skin sec-
tions, quantified SSc histopathological features using 
standardized approaches, and assessed the association 
between SSc histopathological features and the mRSSs 
and the Fibrosis Scores [5]. In a small number of patients 
treated with belumosudil, we found non-clinically mean-
ingful mRSS improvement. Importantly, we found that 
the DNN algorithm applied to stained SSc skin section 
may be a reproducible, quantitative outcome for SSc 
skin disease in a clinical trial. Moreover, the histologic 
features that significantly correlated with mRSS changes 
(e.g., telangiectasia and perivascular CD3 +) appear 
distinct from those that significantly correlated Fibro-
sis Score changes (e.g., hyalinized collagen, SC fat loss). 
These results suggest that applying AI such as DNN algo-
rithms to skin sections from patients with dcSSc may be 
a potentially useful quantitative outcome for measuring 
SSc skin disease beyond thickness.

Methods
Participants
The early phase 2, open-label, belumosudil multicenter 
study protocol (Kadmon Corporation LLC., a Sanofi 
company, KD025-215) received Institutional Review 
Board approval at each participating site (Yale University, 
Columbia University, Northwestern University, and Uni-
versity of California, Los Angeles). Patient research part-
ners provided written informed consent in accordance 
with the Declaration of Helsinki. Patients with SSc who 
fulfilled the 2013 American College of Rheumatology/
European League Against Rheumatism Systemic Sclero-
sis Classification Criteria [with SSc disease duration ≤ 6 
years and diffuse cutaneous disease (15 ≤ mRSS ≤ 40)] 
were eligible [5, 29] (Table 1).

Clinical assessment and dermal biopsies
Consenting participants received 200 mg belumosudil tab-
lets twice daily for 52 weeks. Clinical data including mRSS, 
and skin biopsies, were obtained. Participants underwent 
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4  mm dermal biopsies of the non-dominant dorsal mid-
forearm at baseline (W0) and W24 and 52 and/or at end 
of trial (EOT). Biopsies were placed in formalin, trans-
ferred to 70% ethanol after 24 h, and shipped to a central 
laboratory for analysis. Biopsies were paraffin-embedded, 
sectioned and stained with hematoxylin and eosin (H&E), 
Masson’s trichrome, CD3, CD8, CD31, CD34, and alpha-
smooth muscle actin (αSMA) (all Leica Biosystems, Buf-
falo Grove, IL). The AlexNet DNN algorithm was applied 
to trichrome-stained sections as previously described [28].

The primary trial outcome was the American College 
of Rheumatology (ACR)-endorsed Composite Response 
Index for Systemic Sclerosis (CRISS) response at W24 
[30, 31]. Briefly, the CRISS is a two-step process with 
assessment of newly impaired or worsening cardiac func-
tion (ejection fraction of ⩽45% requiring treatment), 
lung function (relative loss of forced vital capacity % pre-
dicted (FVC) of > 15 in patients with ILD) or new onset 
of pulmonary arterial hypertension (PAH), or the occur-
rence of scleroderma renal crisis during step one. In 
the absence of step one outcomes, five variables [FVC% 
predicted, mRSS, Physician Global Assessment (PGA), 
Patient Global Assessment (PtGA) [32], and Health 
Assessment Questionnaire-Disability Index (HAQ-DI)] 
[33] are evaluated in step two, and the overall probability 
of improvement during the trial are reported. We antici-
pate future publication of the trial results.

Histological analysis
Two blinded dermatopathologists independently scored 
slides for 16 histological parameters based upon previous 

SSc histopathology studies (Fig.  1a) [34–37]: 1) Epidermal 
papilla loss, 2) entrapment of at least one eccrine coil, 3) 
complete loss of eccrine coil, 4) presence of telangiectasia, 
5) loss of at least one hair follicle, 6) presence of calcifica-
tion, 7) loss of subcutaneous (SC) fat or widening of the SC 
septa, 8) presence of at least one thickened intima, all scored 
as “yes” or “no”; 9) mean epidermal thickness in µm (for 
five randomly selected sites); 10 & 11) density of perivas-
cular CD3 + and CD8 + lymphocytes, 12) % CD8 + among 
CD3 + lymphocytes, 13) hyalinized collagen, 14) CD34, 15) 
trichrome, 16) αSMA staining (scored numerically with ref-
erence to a dermatopathologist-generated standard image 
set). Standard image set images were scored numerically 
from 0 = normal staining to 5 = maximum staining (Fig. 1a). 
To evaluate intra-observer reproducibility, each dermato-
pathologist reassessed histological features at two time 
points with a three-day washout period.

Deep neural network feature extraction
Skin biopsy sections were imaged using a  Hamamatsu 
Nanozoomer S210 whole-slide scanner (Shizuoka, Japan) 
at 40 × objective, and images were saved as.ndpi files. 
Because the.ndpi file format is designed for storage, these 
images were converted into Zarr files for computational 
investigation. Zarr files were transformed into QIFs using 
the AlexNet DNN model, pretrained on ImageNet, avail-
able from the ONNX Model Zoo [38]. The AlexNet algo-
rithm was applied to each of 100 randomly selected image 
patches (~ 0.16 mm2) from the dermis (epidermis and sub-
cutis were excluded) to generate a new set of 4,096 QIFs 
for each image patch (100 × 4,096 QIF matrix) (Fig. 2).

Table 1  Baseline study participant data

dcSSc diffuse cutaneous systemic sclerosis, Scl-70 anti-topoisomerase I antibodies, FVC forced vital capacity, DLCO diffusion capacity for carbon monoxide, ILD 
interstitial lung disease,HRCT​ chest high-resolution computed tomography, mRSS modified Rodnan Skin Score

Characteristic, mean (SD) or as indicated

Trial Participants
N = 10

Participants 
with paired skin 
biopsies
N = 5

Age 49.6 (7.3) 53.2 (4.34)

dcSSc duration (y) 4.46 (1.01) 4.2 (0.84)

Female, n (%) 10 (100) 5 (100)

Race/Ethnicity, n (%)

  White, non-Hispanic 8 (80) 5 (100)

  Black or African American, non-Hispanic 2 (20) 0 (0)

Positive Anti-Scl-70, n (%) 2 (25) n = 8 1 (20)

Positive Anti-RNA polymerase III, n (%) 4 (50) n = 8 3 (60)

Baseline FVC % predicted (L) 85 (20) 71 (25.9)

Baseline DLCO % predicted (L) 75 (14) 66.8 (7.8)

ILD on HRCT, n (%) 1 (11.1) n = 9 1 (20)

mRSS 24.9 (6.79) 24.4 (9.81)
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Linear regression model and association with mRSS 
and local skin score
As in prior work, we developed a linear regression 
model composed of QIF as predictor variables and the 
mRSS as the outcome variable (model output termed 
‘Fibrosis Score’). We selected lambda from a grid of 16 
values logarithmically spaced between 10–5 (weak pen-
alty) and 103 (strong penalty). For each image patch and 

value of lambda, the linear model predicted a value for 
mRSS as a linear combination of the QIF levels plus an 
intercept (which accounts for the mean mRSS of the 
training population). To integrate from image patches 
to biopsies, we averaged the predicted scores for the 
100 image patches within a biopsy to obtain a Fibrosis 
Score. The model was cross validated by holding out 
sets of patients to avoid within-patient correlations.

Fig. 1  Systemic sclerosis dermatopathology parameters and scoring, inter-rater agreement and parameter change. A Scoring for 16 SSc 
dermatopathology parameters. B Histologic parameter Kappa values and parameter score change per week (*indicates p-value < 0.05)

Fig. 2  Deep Neural Network applied to trichrome-stained skin biopsy sections. A Image patches of skin biopsy section stained with trichrome. 
B Artificial intelligence (AlexNet Deep Neural Network) applied to each image patch (100 per biopsy). C Quantitative Image Features generated 
for each image patch
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Statistical analyses
Inter- and intra-rater variability for 16 histological assess-
ments were calculated using Cohen’s Kappa values [39]. 
We defined Kappa values ≤ 0 = no agreement, 0.01–
0.20 = none to slight, 0.21–0.40 = fair, 0.41– 0.60 = mod-
erate, 0.61–0.80 = substantial, and 0.81–1.00 = almost 
perfect agreement [39]. Ordinal logistic regression models 
were used to calculate odds ratios (OR), the relationship 
between an ordinal response variable (the mRSS and the 
Fibrosis Score, separately) and one or more explanatory 
variables (histological parameters). The dermatopatholo-
gists’ parameter score change/week average from their two 
timepoints was computed by fitting each measurement 
into a mixed effects model, with random effects for partici-
pant and slope and an independent covariance structure. 
Spearmen’s rank correlation coefficient was used to meas-
ure correlations between mRSS and the Fibrosis Score. As 
mentioned above, a lasso regression model trained using 
a previously validated data set to read trichrome-stained 
biopsy skin sections was applied to obtain a ‘Fibrosis Score’ 
(arbitrary range approximating the mRSS range 0–51) 
[28]. The Fibrosis Score was compared to mRSS through 
a correlation plot. A p-value < 0.05 was considered statis-
tically significant. All statistical analyses were obtained 
using Stata, version 18 (Statacorp, College Station, TX). 
No corrections for multiple hypothesis testing were made 
due to the exploratory nature of this study.

Results
Participant data
Ten participants were recruited for this pilot study 
designed to test preliminarily the safety of belumosudil 
for the treatment of skin fibrosis in patients with early 
dcSSc. The ten recruited patients were women, eight 
were white (non-Hispanic) and two were black (non- 
Hispanic) (Table  1). Participants had a mean (SD) age 
of 49.6 (7.3) years and dcSSc duration of 4.5 (1.0) years, 
respectively. The median, interquartile range (IQR) mRSS 
change from 0-52W was −2.5 (−11—7.5) (Fig. 3a).

Four out of ten participants completed the trial. Of 
the six participants who did not complete the trial: three 
withdrew due to adverse events, one had early study ter-
mination due to adverse events, one had early study ter-
mination due to progressive disease, and one patient died 
of acute renal failure and shock (deemed unrelated to 
the study drug). Skin biopsies were collected from seven 
of ten participants using biopsy kits provided by a con-
tracted research organization. Despite this, tissue fixa-
tion issues for biopsies collected at each participating site 
resulted in only five of seven participants having at least 
one paired biopsy suitable for analysis. The median (IQR) 
mRSS change 0-52W for these five participants was −2 
(−9—7.5) (Fig.  3b). Three of those five participants had 

skin biopsies from all three time points: W0, W24, and 
W52 (Fig. 4). The remaining two participants had avail-
able paired biopsies from W0 and W24, and W24 and 
W52, respectively.

Eight out of the ten trial participants had SSc-specific 
antibody data available. Of these, four had positive RNA 
polymerase III (four with negative tests), and two par-
ticipants had positive Scl-70 (six with negative tests). Two 
participants lacked both RNA polymerase III and Scl-70 
serum autoantibodies. We lacked antibody information 
for two patients from two different participating sites 
(Table  1). The five participants with paired biopsies had 
available SSc-specific antibody data: one had a positive 
Scl-70 (four with negative tests), and three participants 
had positive RNA polymerase III (two with negative tests).

Histological analysis
Eccrine entrapment (substantial agreement), SC fat loss/
widened septum (moderate agreement), thickened intima 
(moderate agreement), and loss of epidermal papil-
lae (moderate agreement) were the histological param-
eters with best inter-rater agreement [39] (Fig. 1b). Out 
of the 16 SSc parameters, significant change per week 
(from baseline to W52) was observed for eccrine entrap-
ment, SC fat loss/widened septum, and % CD 8 + among 
CD3 + lymphocytes (Fig. 1b).

Relationship between mRSS and the Fibrosis Score
The correlation between the five participants’ mRSS 
(three time points each) and DNN generated Fibrosis 
Scores was R = 0.3 and p = 0.674 (Fig. 5).

Relationship between mRSS and Fibrosis Score 
and histological parameters
Per 1-unit mRSS change, the histological parameters 
with significant associated responses/changes (OR, 95% 
CI, p-value) were: telangiectasia = 2.01, [1.31—3.07], 
(p = 0.001); perivascular CD3 + lymphocytes = 0.99, [0.97—
1.02], (p = 0.015); and % of CD8 + among CD3 + cell = 0.95, 
[0.89—1.01], (p = 0.031). Similarly, per 1-unit Fibrosis Score 
change, the histological parameters with significant associ-
ated changes (OR, 95% CI, p-value) were: subcutaneous 
fat loss/widened septum = 1.47, [1.19—1.81], (p = 0.00033); 
thickened intima = 1.21, [1.06—1.38], (p = 0.005); eccrine 
entrapment = 1.14, [1—1.31], (p = 0.046), and hyalinized 
collagen = 1.1, [1.04 – 1.16] (p = 0.00033) (Table S1).

Discussion
The mRSS, developed in the 1970s, remains the gold 
standard skin thickness assessment used in SSc clini-
cal trials [3]. In spite of its inclusion as one of five 
components of the revised CRISS [4, 31], the mRSS 
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has several limitations: it is only semi-quantitative, 
only assesses dermal thickness, requires long intervals 
between repeated measurements to observe clinically 
meaningful changes, and is confounded by obesity and 
edema [40]. Identification of a new SSc skin outcome 
that is quantitative, reproducible, sensitive to early 
changes, and inclusive of the three pathologic SSc fea-
tures (fibrosis, inflammation and vasculopathy) would 
likely improve our ability to identify SSc skin disease. 
We used skin biopsies from a clinical trial to, 1) test 
the potential feasibility and utility of the DNN-derived 
Fibrosis Score as an SSc skin outcome, and 2) deter-
mine the histologic features (using published SSc his-
tological features) that the DNN algorithm “sees” and 

quantifies. We found, 1) skin biopsies were feasible and 
useful to obtain during a clinical trial, 2) a weak cor-
relation between the mRSS and the Fibrosis Score, and 
3) different histological parameters were significantly 
associated with mRSS versus Fibrosis Score changes. 
These results suggest that skin biopsies could be 
included as an SSc clinical trial outcome.

Alternative approaches for quantifying SSc skin dis-
ease have been explored including durometry [41], 
optical coherence tomography [42], and histological 
readouts (hyalinized collagen, pathology on trichrome 
stain and loss of dermal papillae) [37]. Histological 
assessment of SSc skin was first described in a 1957 
paper, where researchers showed the pathological 

Fig. 3  Modified Rodnan skin score trajectories. A Ten participants’ mRSS change from W0-52, median (interquartile range/IQR): −2.5 (−11—7.5). B 
Five participants’, with paired biopsies, mRSS change from W0-52, median (IQR): W0 to last follow-up: −2 (−9—7.5)
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features for a variety of clinical presentations of SSc 
to be indistinguishable [36]. Furthermore, the SSc 
microscopic features (e.g., dermal edema, fibrosis, 
and sclerosis of collagen fibers, as well as obliterative 
changes of dermal vessels, elastic tissue loss, and loss 

of SC fat) varied depending on disease stage (e.g., early 
edematous, sclerotic, or involutional) while epidermal 
changes were of limited diagnostic utility [36]. Results 
of a 2006 study suggested that myofibroblast number 
and hyalinized collagen alterations correlated with 

Fig. 4  Stained sections for three participants. H&E and trichrome-stained biopsies for three participants with 0-, 24- and 52-W biopsies showing 
associated mRSS and local arm scores

Fig. 5  Correlation between modified Rodnan skin score (mRSS) and DNN Fibrosis Score. The Spearman correlation between mRSS and DNN 
Fibrosis Scores for five participants with baseline and follow-up biopsies W0-52
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mRSS, durometric scores, and trichrome-stained skin 
biopsy scores [35], while results of a 2009 study sug-
gested that myofibroblast number, narrowing of the 
arteriolar lumen in the deep vascular plexus (reticular 
dermis) and decreased dermal vascular density were 
significantly associated with increased skin thickness 
[34]. Results of a 2011 study reported that epidermal 
thinning, increased epidermal pigmentation, loss of 
epidermal papillae, and increased melanophages (’pig-
ment incontinence’) are important in SSc [37]. Based 
upon these four studies, our two study dermatopathol-
ogists selected 16 SSc skin disease histologic param-
eters (see Methods) to score. Parakeratosis, pigment 
incontinence, and mean epidermal pigmentation were 
excluded as they are confounded by native skin color 
and degree of external manipulation. Histologic param-
eters with best inter-rater consistency were eccrine 
entrapment, SC fat loss/widened septum, thickened 
intima, and loss of epidermal papillae. Histologic 
parameters with worst inter-rater consistency were 
pathology on CD34 staining, mean epidermal thick-
ness, eccrine gland loss, and telangiectasia. Our results 
are consistent with histology results in other diseases 
where agreement among experts can be variable under-
scoring the need for assistive devices like AI [43].

We are the first to apply AI to SSc skin biopsies; how-
ever, AI methods are increasingly being applied to solve 
problems in medicine. For instance, investigators applied 
a pre-trained convolutional neural network model (trained 
on ImageNet) to H&E slides from tumors (e.g., melanoma, 
lung) to determine the likelihood of response to anti-PD-1 
treatment in patients. The model was used to classify each 
slide as belonging to an anti-PD-1 responder or a non-
responder as assessed by progression-free survival. They 
calculated the area under the curve (AUC) comparing 
the model’s predictions to real-world outcomes. Results 
showed an AUC of 0.778 (95% confidence interval, 64%–
91%) for 54 melanoma test samples and AUC of 0.645 
(95% CI: 49% − 78%) for 55 lung cancer validation samples 
[44]. Another 2020 paper examined the performance of AI 
for prostate cancer detection compared to expert review 
by 23 urological pathologists. The AI system was trained 
using 6953 prostate biopsy cores stratified according to 
the Gleason score, a scoring system rating risk of cancer 
spread. The model was tested on an independent data-
set comprised of 910 benign, and 721 malignant, biopsy 
slides and validated on an external dataset comprised of 
108 benign, and 222 malignant, biopsy slides. The results 
showed an AUC representing the ability of the AI system 
to distinguish malignant from benign cores of 0.997 (95% 
CI 99.4%–99.9%) for the independent test dataset and 
AUC 0.986 (97.2%–99.6%) for the external validation data-
set [43].

Applying AI (such as our DNN model) to skin biopsies 
as a novel SSc skin outcome would potentially improve 
clinical care and clinical trial design. Skin biopsies can 
readily be performed at medical centers around the globe, 
fixed in formalin, and shipped at room temperature to a 
central analysis site. This would drastically increase the 
number of recruitment sites and promote greater clinical 
trial participation by patients from diverse backgrounds 
for increased generalizability of trial data. Barring fixa-
tion issues such as we encountered, applying AI to skin 
biopsies from clinical trials should be feasible. Another 
benefit is the ability to train separate algorithms to quan-
tify inflammation, vasculopathy, and/or increased dermal 
thickness depending on the mechanism of action of the 
therapy. How best to quantify the absence of a healthy 
skin histology feature (e.g., loss of eccrine glands or hair 
follicles) will likely be more challenging.

We analyzed forearm skin biopsies because we, and 
others, have shown that forearm skin score (0–3) strongly 
and significantly correlates with mRSS [28, 45]. Thus, a 
quantitative AI-generated score of forearm skin disease 
could be a surrogate for total body skin disease. We view 
the low correlation between mRSS and Fibrosis Scores 
as a potential study strength because it suggests that our 
AI-generated score quantifies skin features beyond skin 
thickness. A strong correlation between the mRSS and 
Fibrosis Scores might suggest that the Fibrosis Score 
is merely a more precise quantification of skin thicken-
ing. Subcutaneous fat loss/widened septum, thickened 
intima, eccrine entrapment, and hyalinized collagen 
showed the strongest associations with the Fibrosis Score 
suggesting these parameters are important features in 
early dcSSc. Our small sample size precludes drawing 
firm conclusions, but our results provide an important 
proof-of-concept: clinical trials can include AI-generated 
skin outcome assessments that complement the mRSS. 
Of course, with any AI assessment of stained skin biop-
sies, staining batch effects must be addressed and over-
come. This can be accomplished with larger sample sizes 
and inclusion of additional stains.

Eight of the ten participants demonstrated mRSS 
improvement between baseline and last assessment, but 
only four patients demonstrated clinically significant 
changes (defined as at least 20% or 25% improvement 
from baseline mRSS [30, 31]). Of note, each of these 
patients had RNA polymerase III serum antibodies pre-
sent drawing into question whether the skin changes 
were due to treatment or due to the natural disease his-
tory. Two of these four patients showed mRSS reductions 
greater than five points, the minimal clinically important 
difference, thus supporting consideration of a larger, ran-
domized, placebo-controlled trial of belumosudil.
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We compared the histologic features that were signifi-
cantly associated with the Fibrosis Score with those that 
were significantly associated with mRSS to assess con-
cordance. Importantly, we found that mRSS improvement 
mirrored decreases in telangiectasia, perivascular CD3 + , 
and % CD8 + among CD3 + cells. Specifically, telangiec-
tasia showed the highest odds of relative change com-
pared to a 1-unit mRSS change [OR (95% CI) 2.01 (1.31 
– 3.07)] (Table S1). Thus, each point increase in the mRSS 
increased the odds of having a higher telangiectasia score 
by 101%. Fibrosis Score changes were associated with hya-
linized collagen, SC fat loss, thickened intima, and eccrine 
entrapment changes during belumosudil treatment. Spe-
cifically, SC fat loss/widened septum showed the high-
est odds of relative change compared to a 1-unit change 
in the Fibrosis Score [OR (95% CI) 1.47 (1.19—1.81)] 
(Table  S1). Thus, each point increase in Fibrosis Score 
increased the odds of having a higher SC fat loss/widened 
septum score by 47%. These findings indicate that the 
mRSS and Fibrosis Score appear to measure distinct path-
ological features, and that combining the two approaches 
may be better than using either one in isolation. Thus, 
in addition to patient-reported outcome measures that 
assess treatment-associated feel and function changes, the 
best use of the Fibrosis Score presently would be inclusion 
as a complementary outcome to the mRSS.

Study limitations include the small dataset of only five 
participants with longitudinal biopsies. We planned to 
recruit twelve participants, but the study sponsor ter-
minated the study after recruitment of ten. As stated 
above, three patients withdrew from the study and one 
patient died. Additionally, tissue fixation issues that we 
attribute to faulty skin biopsy collection kits resulted in 
50% unusable biopsies (≥ 1 collected at each of the four 
participating sites). Small sample bias may have led to an 
overestimation of the odds ratios; therefore, larger stud-
ies are needed to validate these findings.

Study strengths include our multicenter study design, 
our application of a published AI approach for quantify-
ing skin disease, and the use of real-world clinical trial 
biopsies. The comprehensive histologic assessments 
for 16 skin features by two dermatopathologists at two 
time points is an additional strength. We acknowledge 
that our previously published DNN model, utilized in 
this study, is based on a pre-trained neural network 
originally trained on natural images. Future iterations of 
our modeling framework will aim to incorporate more 
advanced techniques to fully capture the information 
within histological images. This may include developing 
more sophisticated frameworks such as graph neural net-
works [46–48] and improving averaging methods across 
selected patches to better represent the comprehensive 
details of the histological images.

With the growing number of proposed therapies for 
SSc skin disease, there is an urgent need to increase the 
number of investigative sites that can participate in tri-
als. Our data demonstrate the feasibility of obtaining skin 
biopsies for use as SSc skin outcomes in clinical trials. 
Our research supports the combined use of DNN and 
histological parameter analyses of skin biopsies as fea-
sible SSc skin outcomes that are quantitative and com-
prehensive for use in SSc clinical trials. Currently, we are 
analyzing archived biopsies from SSc patients obtained 
at other institutions, working to determine the optimal 
stain(s) (e.g., CD3, CD8 and CD34) for use with AI, and 
annotating hundreds of slides for dozens of SSc features 
to permit us to train additional AI models with enhanced 
performance.

Conclusions
To gain insights into the histological features of SSc 
that may be quantified using deep learning approaches, 
we applied our previously published DNN algorithm 
to stained skin biopsies obtained during a clinical trial 
of belumosudil in patients with early dcSSc. Our data 
show that belumosudil was associated with non-clini-
cally meaningful mRSS improvement. We examined the 
relationship between the mRSSs and DNN-generated 
Fibrosis Scores, and important SSc histological param-
eters. The distinction between histologic parameters 
significantly associated with mRSS and Fibrosis Score 
suggests that the DNN algorithm may be a useful strategy 
for quantifying SSc pathologic features involved in SSc 
skin disease beyond from dermal fibrosis. Ongoing work 
includes analyses of larger cohorts and training the DNN 
algorithm with H&E-, in addition to trichrome-, stained 
samples. We herein present preliminary findings that 
support applying AI to stained skin biopsies in future SSc 
studies. This approach could potentially streamline clini-
cal trials, transform the pace of global recruitment, and 
increase diversity and thus generalizability of SSc clinical 
trial results.
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