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Abstract
Background Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by chronic 
inflammation and multi-organ damage. A central factor in SLE pathogenesis is the excessive production of type 
I interferon (IFN-I), which drives immune dysregulation. Monocytes, key components of the immune system, 
significantly contribute to IFN-I production. However, their specific roles in SLE remain incompletely understood.

Methods This study utilized bioinformatics and statistical analyses, including robust rank aggregation (RRA), DESeq2, 
and limma, to analyze transcriptome data from peripheral blood mononuclear cells (PBMCs) and monocytes of 
SLE patients and healthy controls. Single-cell RNA sequencing (scRNA-seq) data were processed using the Seurat 
R package to identify and characterize monocyte subsets with a strong IFN-driven gene signature. Flow cytometry 
was employed to validate key findings, using markers such as CD14, SIGLEC1, and IRF7 to confirm monocyte subset 
composition.

Results Our research has found that monocytes in SLE undergo IFN-driven transcriptional reprogramming, with the 
upregulation of key interferon signature genes (ISGs), forming the SLE-Related Monocyte Signature (SLERRAsignature). 
Moreover, the composition of mononuclear phagocyte subsets in SLE patients changes, with an increase trend 
in the proportion of the CD14Mono8 subset in the flare group. The differentially expressed genes (DEGs) in 13 
mononuclear phagocyte subsets of SLE are mainly ISGs, and the expression of ISGs is higher in severe patients. We 
identified SIGLEC1+IRF7+ monocytes among these subsets and for the first time discovered this group of cells in the 
peripheral blood of healthy individuals. In SLE, the enrichment score of the gene set representing SIGLEC1+IRF7+ 
monocytes is positively correlated with the severity of SLE. Finally, flow cytometry confirmed that the frequency of 
CD14+SIGLEC1+IRF7+ monocytes in PBMCs was higher in SLE compared with healthy controls.
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Introduction
SLE is a multifaceted autoimmune disorder that pres-
ents significant challenges in diagnosis, therapy, and 
understanding of its pathophysiology. Characterized by 
chronic inflammation and widespread tissue damage, 
SLE can affect virtually every organ system, leading to a 
broad spectrum of clinical manifestations [1–3]. These 
range from relatively mild symptoms, such as fatigue and 
joint pain, to severe, life-threatening conditions including 
lupus nephritis (LN), central nervous system and cardio-
vascular complications. The heterogeneity of the disease, 
both in clinical presentation and underlying immune dys-
regulation, complicates management and necessitates a 
deeper understanding of the molecular mechanisms driv-
ing the disease [4–6].

Among the various cytokines, IFN-I is particularly cen-
tral to the pathogenesis of SLE. IFN-I, which includes a 
family of cytokines such as IFN-α and IFN-β, has robust 
antiviral properties and shapes the immune response. 
In SLE, the excessive production of IFN-I results in the 
aberrant activation of monocytes and other immune 
cells, exacerbating the chronic inflammation and autoim-
munity [7–9]. Previous research has found that mono-
cytes, influenced by IFN-I, experience transcriptional 
reprogramming that enhances their capacity to generate 
inflammatory cytokines, present antigens, and engage 
with other immune cells, thereby amplifying the autoim-
mune response [10]. In addition, activated monocytes 
can also produce IFN-I on their own, creating an adverse 
positive feedback pathway that exacerbates the sever-
ity of SLE [8, 11]. Therefore, this IFN-I-related immune 
activation is closely associated with clinical manifesta-
tions in SLE patients, especially in PBMCs. A large pro-
portion of SLE patients exhibit upregulated ISGs in their 
PBMCs [12, 13]. The upregulated ISGs within PBMCs 
are referred to as “IFN signature” and have played a sig-
nificant role in the diagnosis and assessment of SLE [12, 
13]. This signature serves as both an indicator of disease 
activity and an active participant in the disease’s process 
[14]. Several studies of ISGs have reported their involve-
ment in SLE, such as NLRP3 [15–17] and GBPs [18, 19].

Despite the well-documented role of IFN-I in SLE, the 
specific contributions of different monocyte subsets to 
disease progression remain poorly understood. Mono-
cytes are not a homogeneous population; they consist of 
various subsets with distinct functions and phenotypes. 
These include classical (CD14++CD16−), intermediate 

(CD14++CD16+), and non-classical (CD14+CD16++) 
monocytes [14], each of which may play different roles in 
health and disease [14, 20]. Recent advances in scRNA-
seq have revealed even greater heterogeneity within these 
subsets, uncovering previously unrecognized populations 
that may contribute to the pathogenesis of autoimmune 
diseases like SLE [13, 21].

The pathogenesis of SLE is complex, and scRNA-
seq provides a new way to study it. Wang et al. showed 
that the number of peripheral blood monocytes in 
SLE patients increased and the expression of IRF1 was 
high, which promoted the secretion of a variety of pro-
inflammatory factors and broke the immune balance 
[22]. Sarin et al. found that vaccine-induced monocyte 
population levels were reduced after vaccination in SLE 
patients, affecting innate immunity [23]. Honado ost 
et al. compared SLE and type 1 diabetes and found that 
C-monocytes were enriched in both, but there were also 
differences [24]. In summary, monocytes are of great 
significance in the pathogenesis of SLE and are closely 
related to immune disorders and disease progression. It 
provides key clues for revealing the pathogenesis of SLE 
and developing new therapies.

This work seeks to fill the information gap about the 
unique functions of monocyte subsets in SLE by utiliz-
ing advanced scRNA-seq and bulk RNA-seq methods. 
These methodologies provide a high-resolution analy-
sis of the transcriptome landscape of monocytes in SLE, 
elucidating the molecular pathways and gene expression 
levels that define various subsets. We aim to elucidate 
the function of monocyte subsets by exhibiting a robust 
IFN-driven gene signature in the pathogenesis of SLE and 
investigate their potential as biomarkers and therapeutic 
targets.

Materials and methods
Integrated analysis of multiple transcriptome data
There are more than a dozen transcriptome expres-
sion profiles of peripheral blood from SLE patients. In 
order to effectively integrate and analyze these data 
sets and find DEGs in the transcriptome of peripheral 
blood from SLE patients, RRA method was used to fur-
ther integrate the DEGs derived from each expression 
profile data [25]. To find the highly expressed genes in 
SLE patients by RRA method, we first sorted the DEGs 
obtained from each expression profile data by Log2 fold 
change (Log2FC) from large to small, and then used the 

Conclusions Our study found that the expansion of IFN-I-producing monocyte subsets, particularly the 
CD14+SIGLEC1+IRF7+ subset, plays a crucial role in SLE pathogenesis. This subset may serve as a potential biomarker 
and therapeutic target for managing SLE.

Keywords Systemic lupus erythematosus, Single-cell RNA sequencing, Type I interferon, Interferon-stimulated genes, 
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RRA algorithm package to re-calculate the differential 
expression degree of each gene after ranking by differen-
tial expression degree. Because RRA integrates multiple 
transcriptome data based on the rank of the degree of 
differential expression, the results of integration analysis 
cannot be affected by the specific value of gene expres-
sion, so it can effectively integrate transcriptome data 
using different detection techniques. (The data integra-
tion process throughout the study can be seen in Supple-
mentary Fig. 1.)

Analysis of transcriptome data
We utilized several publicly accessible datasets for our 
analysis, which were downloaded from the Gene Expres-
sion Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/), 10x 
Genomics Database (www.10xgenomics.com/) and 
ArrayExpress Database ( h t t p  s : /  / w w w  . e  b i .  a c .  u k / b  i o  s t u  
d i e  s / a r  r a  y e x p r e s s). The monocyte transcriptome data 
from SLE patients and healthy controls (Table  1) were 
employed for RRA analysis of crucial genes that are 
highly expressed in SLE. The scRNA-seq data from 
healthy controls and SLE patients with different clinical 
types (Supplementary Table 1) were employed to analyze 
the composition changes of mononuclear phagocytes in 
the peripheral blood of SLE patients. The scRNA-seq data 
from autoimmune diseases, cancers, and healthy controls 
(Supplementary Table 2) were employed to identify and 
analyze the genetic signatures of mononuclear phagocyte 
subsets. The transcriptome data of whole blood cells or 
PBMCs from SLE patients and healthy controls included 
14 datasets (Supplementary Table 3) to analyze transcrip-
tome expression differences.

scRNA-seq analysis and cell type identification
The scRNA-seq data were processed using the Seurat 
R package (version 3.0) [26], which is currently a main-
stream and widely used scRNA-seq analysis tool. Qual-
ity control was mainly based on the number of feature 
genes in each cell and the proportion of mitochondrial 
genes. To reveal the changes of mononuclear phagocyte 
subsets in patients with SLE by analyzing scRNA-seq of 
peripheral blood, the number of feature genes measured 
in each cell must exceed 1000, the proportion of mito-
chondrial genes must be less than 10%, and mononuclear 
phagocytes of each sample must exceed 500. To obtain 
high-quality scRNA-seq to unveil the precise features of 
the subsets of peripheral blood mononuclear phagocytes, 
the number of feature genes measured in each cell must 
exceed 1500, and the proportion of mitochondrial genes 
must be less than 15%. We used the SCTransform func-
tion in Seurat to integrate scRNA-seq data from differ-
ent samples. This method standardizes gene expression 
while taking into account technical covariates such as 
sequencing depth and cell-specific variations. We used 
an anchor-based integration method to correct batch 
effects by identifying shared features (anchors) between 
different batches to align the datasets. The integration 
quality was verified through UMAP (Uniform Manifold 
Approximation and Projection) visualization and marker 
gene identification to ensure that the downstream analy-
sis results have biological significance. UMAP was com-
bined with t-SNE (t-Distributed Stochastic Neighbor 
Embedding) for dimensionality reduction analysis. To 
precisely define cell types, we first used SingleR for cell 
type annotation, and then further confirmed the cell 

Table 1 The transcriptome data of SLE and healthy control 
monocytes
Source samples Analytical 

technique
clinical 
characteristics

GSE131525 3 SLE patients 
and 3 healthy 
controls

RNA-seq No special 
explanation

GSE120442 5 SLE patients 
and 5 healthy 
controls

RNA-seq No special 
explanation

GSE55447 42 SLE patients 
and 10 healthy 
controls

Microarray Peripheral blood 
was collected from 
21 African-Amer-
ican (AA) and 21 
European-American 
(EA) SLE patients, 5 
AA controls, and 5 
EA controls.

GSE53419 9 SLE patients 
and 8 healthy 
controls

RNA-seq No special 
explanation

GSE50395 6 SLE patients 
and 3 healthy 
controls

Microarray 3 SLE patients with 
antiphospholipid 
syndrome

GSE46907 5 SLE patients 
and 5 healthy 
controls

Microarray The sample con-
sisted of 5 healthy 
controls and 5 
children with SLE

GSE38351 14 SLE patients 
and 12 healthy 
controls

Microarray No special 
explanation

GSE37356 20 SLE patients 
and 14 healthy 
controls

Microarray Subjects also under-
went laboratory and 
imaging studies of 
the coronary arter-
ies, carotid arteries, 
and aorta to evalu-
ate for subclinical 
atherosclerosis.

E-MTAB-2713 58 SLE patients 
and 68 healthy 
controls

Microarray No special 
explanation

E-MTAB-145 11 SLE patients 
and 23 healthy 
controls

Microarray No special 
explanation

http://www.ncbi.nlm.nih.gov/geo/
http://www.10xgenomics.com/
https://www.ebi.ac.uk/biostudies/arrayexpress
https://www.ebi.ac.uk/biostudies/arrayexpress
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types based on the currently recognized characteristic 
molecules of immune cells [27]. We used the FindAll-
Markers function in Seurat to explore genes highly 
expressed in certain subgroups and selected significantly 
highly expressed genes with|Log2FC > 0.1| and adjusted 
p-value < 0.05 (the Log2FC values in scRNA-seq are usu-
ally low, so the threshold was set at 0.1).

Transcriptome differential expression analysis
For the analysis of bulk RNA-seq data, we employed two 
R packages, DESeq2 and limma, which are standard tools 
for differential gene expression analysis [28, 29]. DESeq2 
was used to normalize the read counts across samples, 
considering the differences in sequencing depth and 
sample composition. “Limma” package was then applied 
to identify DEGs between SLE patients and healthy con-
trols. DEGs were defined as those with a|Log2FC| > 0.5 
and an adjusted p-value < 0.05, ensuring that only biologi-
cally meaningful changes were considered.

Microarray datasets analysis
Microarray datasets from multiple platforms were pro-
cessed using standard preprocessing pipelines. Raw 
microarray data were background-corrected, normalized 
using the Robust Multi-array Average (RMA) method, 
and log2-transformed to ensure comparability across 
datasets. RNA-seq datasets were analyzed using DESeq2 
and limma for differential gene expression analysis, 
with normalization performed to account for sequenc-
ing depth and compositional differences. To harmonize 
RNA-seq and microarray datasets, we employed the 
RRA method, which ranks genes by significance within 
each dataset and aggregates these ranks across all data-
sets. This platform-independent, rank-based approach 
mitigates biases arising from differences in gene coverage 
and measurement techniques. Differentially expressed 
genes (DEGs) were identified based on aggregated ranks, 
with a cutoff for statistical significance set at an adjusted 
p-value < 0.05 and a|Log2FC| > 0.5.

Protein interaction analysis
To explore the functional interactions between DEGs, 
we conducted protein-protein interaction (PPI) analysis 
using the STRING database (version 11.0). This database 
provides a comprehensive view of known and predicted 
protein interactions, which is crucial for understanding 
the complex networks that underlie biological processes. 
The PPI analysis allowed us to visualize interaction net-
works and identify key nodes that may play central roles 
in SLE pathogenesis. These networks were analyzed and 
visualized using Cytoscape, an open-source software 
platform for network visualization and analysis. By iden-
tifying central nodes and pathways, we could pinpoint 

potential therapeutic targets and gain insights into the 
molecular mechanisms driving SLE.

Gene set enrichment analysis
In order to validate the cell subset signature gene sets we 
have established, we employed two single-sample gene 
set enrichment analysis approaches to examine whether 
the enrichment degree of the signature gene set in the 
relevant cell subset is more pronounced than that in 
other cell subsets.

The two main methods we utilized were the AUCell 
tool within the SCENIC single-cell analysis workflow 
and the Gene Set Variation Analysis (GSVA). The AUCell 
tool in the SCENIC single-cell analysis workflow com-
putes the enrichment degree of a specific functional gene 
set in each cell. A higher enrichment value indicates a 
greater degree of enrichment [30]. GSVA is a commonly 
employed bioinformatics tool for calculating the enrich-
ment degree of a specific gene set in a single sample 
based on transcriptome expression profile data, and it 
can also be utilized to analyze the enrichment or activa-
tion degree of the signature gene set in a single cell [31]. 
We visualized and compared the enrichment degree of 
single-cell marker gene sets using analytical methods in 
Seurat.

We performed Gene Set Enrichment Analysis (GSEA) 
[32] to determine the predefined sets of genes, particu-
larly those related to immune pathways and IFN signal-
ing, were significantly enriched in SLE patients compared 
to controls. GSEA is a computational method that 
assesses whether a set of genes shows statistically sig-
nificant, concordant differences between two biological 
states.

Gene sets with a normalized enrichment score (NES) 
greater than 1 in absolute value and a false discovery 
rate (FDR) q-value less than 0.25 were considered sig-
nificantly enriched. This analysis provided insights into 
the biological processes that are dysregulated in SLE 
and highlighted pathways that may contribute to disease 
progression.

Molecular pathway enrichment analysis
We conducted functional annotation of DEGs using the 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) to gain a deeper understanding of 
the molecular pathways involved in SLE. DAVID is a 
comprehensive bioinformatics resource that facilitates 
the functional interpretation of large-scale genomic data 
by identifying overrepresented biological processes and 
pathways. The analysis focused on Gene Ontology (GO) 
terms and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways [33]. GO terms provided insights 
into the biological processes, cellular components, and 
molecular functions associated with the DEGs, while 
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KEGG pathways highlighted the metabolic and signaling 
pathways that are dysregulated in SLE.

Mass cytometry data analysis
We downloaded the mass cytometry data from healthy 
individuals (FR-FCM-Z2XC) [34] obtained from Flow-
Repository (flowrepository.org/), a publicly available 
database for flow cytometry data. We used FlowJo 
software for initial gating of mononuclear phagocytes 
(CD45+CD3−CD19−) to isolate the monocyte populations 
of interest. The data were then further analyzed using R, 
employing the t-SNE (t-distributed stochastic neighbor 
embedding) algorithm for dimensionality reduction and 
visualization.

Flow cytometry
Peripheral blood collected from SLE patients and healthy 
controls was resuspended in phosphate buffer solu-
tion (PBS) as a single cell suspension at a density of 
1 × 107 cells/ml. Cells were stained with the combina-
tions of CD14-FITC (Biolegend#367116) and CD169 
(SIGLEC1)-PE (Biolegend#346004) mAbs against cell 
surface markers in PBS. After fixing and permeabiliz-
ing with Fixation/Permeabilization solution (ebiosci-
ence#00512343,00522356) and Permeabilization Buffer 
(ebioscience#00833356), cells were blocked by Human Fc 
block (Biolegend#422302) and then stained for nuclear 
transcription factors with anti-IRF7-Alexa Fluor 647 
(ebioscience#51537542). Results were acquired using 
Cytomic FC500 and analyzed using FlowJo. Peripheral 
blood of SLE patients was obtained from the Department 
of Rheumatology and Immunology, The First Hospital of 
Xiamen University. Our work was performed with the 
consent of the patients, and the informed consent form 
was signed and approved by the ethics committee of our 
hospital, 2024Scientific Research Ethics Approval (Ethic 
No.218).

Statistical analysis
All statistical analyses were conducted using R software 
(version 3.6.1) and GraphPad Prism (version 8). Differ-
ences between groups were assessed using appropriate 
statistical tests, including t-tests for continuous vari-
ables and chi-square tests for categorical variables. The 
Mann-Whitney U test or Kruskal-Wallis H test is used to 
analyze the differences between groups of samples with 
unequal variances. A p-value of less than 0.05 was con-
sidered statistically significant, indicating a meaningful 
difference between the groups. For correlation analyses, 
Pearson or Spearman correlation coefficients were calcu-
lated depending on the distribution of the data.

Results
Interferon-driven transcriptomic reprogramming in SLE 
monocytes
Our analysis began with a comprehensive examina-
tion of monocyte transcriptomes using both microarray 
and RNA-seq data from 10 groups of SLE patients and 
matched healthy controls (Table  1). The integration of 
these datasets using the RRA method revealed a distinct 
set of DEGs that were significantly altered in monocytes 
from SLE patients. Notably, we identified an upregula-
tion of key ISGs, including IFI27, RSAD2, IFIT3, USP18, 
and DDX58 (Fig. 1a). In total, 72 genes were significantly 
upregulated in SLE monocytes (Supplementary Table 4) 
forming what we termed the SLERRAsignature. To fur-
ther explore the functional implications of these DEGs, 
we conducted PPI analysis using the STRING database. 
The analysis revealed a complex network of interactions 
among the upregulated genes, particularly those involved 
in the IFN signaling pathway (Fig. 1b and c). This network 
suggests that the aberrant expression of these genes may 
play a central role in the pathogenesis of SLE, particularly 
in the amplification of inflammatory responses.

GSEA analysis of the SLERRAsignature indicated a 
significant enrichment of pathways related to viral infec-
tion and IFN-I responses in SLE monocytes compared to 
healthy controls (Fig. 1d and e). These findings highlight 
the critical role of IFN signaling in the transcriptional 
reprogramming of monocytes in SLE, which may con-
tribute to the systemic inflammation and autoimmunity 
observed in these patients.

Then, we analyzed the diagnostic role of the SLERRA-
signature for SLE using transcriptomic data. GSEA analy-
sis suggested that the SLERRAsignature in E-MTAB-2713 
was significantly enriched in SLE patients (Fig.  1f ). The 
GSVA enrichment score for the SLERRAsignature was 
significantly higher in the SLE group than the control 
group (Fig.  1g). Receiver operating characteristic curve 
(ROC) analysis showed that the GSVA enrichment score 
of SLERRAsignature was advantageous for the diagno-
sis of SLE (AUC: 0.93, 95% CI 0.88–0.97; Fig.  1h). This 
suggests that the SLERRAsignature could be a valuable 
tool for identifying SLE patients based on monocyte 
transcriptomes.

scRNA-seq unveils subset alterations in SLE mononuclear 
phagocytes
To dissect the alterations in the composition of mono-
nuclear phagocytes within the peripheral blood of SLE 
patients, following rigorous quality control and data inte-
gration, we analyzed mononuclear phagocyte subsets 
from scRNA-seq datasets (Supplementary Table 1). The 
datasets included four distinct groups: healthy control, 
inactive SLE (SLEDAI ≤ 10), severe SLE (SLEDAI > 10) 
[35, 36], and flare (recurrence). At first, we normalized 
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and integrated data from these 20 samples, resulting in 
a dataset comprising 29,409 mononuclear phagocytes. 
This analysis identified nine CD14+ monocyte subsets 
(CD14Mono1-9), two CD16+ subsets (CD16Mono1-2) 
and two DC subsets, including conventional dendritic 
cells (cDCs) and plasmacytoid dendritic cell (pDC) 
(Fig. 2a and b).

Composition ratio analysis was conducted after ran-
domly selecting 5500 mononuclear phagocytes from 
all SLE groups and healthy controls (Fig.  2c). Subse-
quently we compared and analyzed the differences of 

the composition ratio in peripheral blood mononuclear 
phagocyte subsets among different groups (Fig.  2d and 
e). Our analysis revealed that, in comparison with healthy 
controls, SLE patients exhibited a higher frequency of 
CD14Mono4 and CD16Mono2, whereas the frequency of 
pDC in SLE patients was inclined to be lower. It is nota-
ble that there is a tendency to increase in the proportion 
of the CD14Mono8 subset in the flare group compared to 
controls (Fig. 2c-e), suggesting that CD14Mono8 mono-
cytes may play a crucial role in disease exacerbation and 
could serve as a biomarker for predicting flares in SLE 

Fig. 1 RRA analysis of the key genes and functional pathways from SLE monocytes, and verified the transcriptional signature gene set of SLE monocytes. 
(a) Identification of key differentially expressed genes through RRA analysis. (b) STRING network analysis illustrating the protein-protein interaction (PPI) 
network among these differentially expressed genes. (c) The network regulatory relationship diagram showed significantly enriched TFs and their regula-
tory targets. Red represents TFs and brown represents regulatory genes. (d) GSEA analysis based on the differentially expressed gene list from the RRA 
analysis. (e) GESA enrichment map of key signaling pathways. (f) GSEA analysis indicates a significant enrichment of the SLE monocyte transcriptional 
signature gene set in SLE patients. (g) The GSVA enrichment scores of the SLE monocyte transcriptional signature gene set compared with the control. 
(h) ROC analysis reveals that the GSVA enrichment scores of the SLE monocyte transcriptional signature gene set
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patients. After individually calculating the proportion of 
each subset for each sample and conducting a statistical 
analysis between groups, it was found that the propor-
tion of cDCs in patients with severe SLE was significantly 
lower than that in healthy control group (p < 0.05), and 
there were no statistically significant differences in the 
composition of other mononuclear phagocyte subsets 
between the groups (p > 0.05) (Fig. 2f ).

Differential transcriptomic profiling highlights ISG 
activation in SLE monocytes
Next, we analyzed the differential gene expression of 
mononuclear phagocyte subsets and found that 13 sub-
sets with upregulated DEGs in SLE patients were domi-
nated by IFN-stimulated genes such as ISG15, IFITM3, 
LY6E, IFI6, IFI44L, EPSTI1, and STAT1 (Fig. 3a-c). GSEA 
of the CD14Mono8 subset indicated significant enrich-
ment of IFN-related pathways, including the IFN-α 

response, IFN-γ response, and defense response to viral 
infection (Fig. 3d), the same situation was also observed 
in pDC (Fig.  3e). These findings underscore the central 
role of IFN signaling in the transcriptional reprogram-
ming of monocytes in SLE. Compared to inactive SLE 
patients, the upregulated genes in all 13 mononuclear 
phagocyte subsets in severe SLE patients were predomi-
nantly ISGs, such as ISG15, IFITM3, IFI6, and IFI44L 
(Supplementary Fig.  2a-c). This suggests that the sever-
ity of SLE is closely linked to the activation of IFN-driven 
pathways, which may contribute to the progression and 
exacerbation of the disease.

SLERRAsignature as a marker for SLE clinical progression 
and ISG expression
Compared to healthy controls, the enrichment of the 
SLERRAsignature, established in the first part of this 
study, was significantly higher in various mononuclear 

Fig. 2 Analysis of Peripheral Blood Mononuclear Cell Subsets in Systemic Lupus Erythematosus Patients. (a) UMAP dimensionality reduction showing the 
distribution of cells of SLE group and healthy control group. (b) UMAP dimensionality reduction comparing the distribution of different subsets of SLE 
group and healthy control group. (c) Bar chart analysis of the composition of mononuclear phagocyte subsets in the SLE group, healthy control group, 
and different SLE clinical subtypes. (d) UMAP dimensionality reduction showing the distribution of cells of the three SLE clinical subtypes and the healthy 
control group. (e) UMAP dimensionality reduction comparing the distribution of different subsets of the three SLE clinical subtypes and the healthy con-
trol group. (f) Analysis of the differences in the proportions of mononuclear phagocyte subset between the groups. *p < 0.05, **p < 0.01
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phagocyte subsets of SLE patients with different clini-
cal subtypes (Fig.  4a and b). Additionally, the enrich-
ment of the SLERRAsignature in mononuclear phagocyte 
subsets of severe SLE patients was substantially more 
pronounced than that in those of inactive SLE patients 
(Fig. 4a and b). Furthermore, the expression levels of key 
ISGs were generally increased in mononuclear phagocyte 
subsets of SLE patients with different clinical subtypes 
compared to healthy controls, and the expression lev-
els of key ISGs in severe SLE patients were significantly 
higher than those in inactive SLE patients across all 
mononuclear phagocyte subsets (Fig.  4b). Interestingly, 
it was also found that the SLERRAsignature was mainly 
enriched in the CD14Mono8 subset (Fig. 4b), and in this 

subset the expression level of the SLERRAsignature was 
correlated with the severity of the disease, indicating that 
this group of cells might have the potential to reflect the 
disease activity. However, further exploration of its char-
acteristics is necessary.

High-quality scRNA-seq unveils the precise features of the 
subsets of peripheral blood mononuclear phagocytes
After a thorough analysis of the enrichment of SLERRA-
signature, we need to analyze the gene characteristics 
of each monocyte subset more precisely to discover the 
characteristics of the cell subset enriched with SLERRA-
signature. We got high-quality scRNA-seq data by rig-
orously screening (Supplementary Table 2) and finally 

Fig. 3 Differential expression analysis of transcriptomes of monocyte subsets in SLE patients and healthy controls. (a) Heatmap showing the expression 
of selected key ISGs in mononuclear phagocyte subsets of SLE patients and healthy controls. (b) Dot plot comparing the expression of selected key 
ISGs in mononuclear phagocyte subsets of SLE patients and healthy controls. (c) Feature plot comparing the expression of IFI6 and IRF7 in mononuclear 
phagocytes of SLE patients and healthy controls. (d) GSEA analysis showing the significantly upregulated signaling pathways in CD14Mono8 cells of SLE 
patients. (e) GSEA analysis showing the significantly upregulated signaling pathways in pDC of SLE patients
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obtained a dataset of 25,557 mononuclear phagocytes, 
including eight CD14+ monocyte subsets, two CD16+ 
monocyte subsets, one pDC subset and one cDCs sub-
set (Fig. 5a). The expression of common cell marker mol-
ecules in each mononuclear phagocyte population was 
shown in Fig.  5b and c. In addition, UMAP dimension-
ality reduction clustering plots of mononuclear phago-
cytes from each sample were shown (Fig.  5d). Among 
them, the CD14Mono7 subset highly expressed SIGLEC1 
(CD169) and IRF7, thus we defined it as SIGLEC1+IRF7+ 
monocytes. Similar to the CD14Mono8 subset in the pre-
vious section, it was a subset of mononuclear phagocytes 
that highly express STAT1, IRF7 and other IFN pathway-
related genes.

Identification of SIGLEC1+IRF7+ monocytes in healthy 
individuals
Furthermore, SIGLEC1+IRF7+ monocytes (CD14Mono7) 
were also present in the peripheral blood of healthy 
individuals (Fig.  6a and b). This subset of cells was not 
previously identified in peripheral blood mononuclear 

phagocytes scRNA-seq studies, making this the first 
study to discover this subset in the peripheral blood of 
healthy individuals. Compared to other monocytes, this 
subset in healthy individuals exhibited higher expressions 
of molecules such as SIGLEC1, IRF7, and STAT1 (Fig. 6c 
and d). Mass cytometry data from the peripheral blood 
of healthy individuals also confirmed the presence of a 
certain proportion of SIGLEC1+ monocytes. In healthy 
individuals, SIGLEC1+ mononuclear phagocytes were 
primarily composed of CD14+ monocytes, with smaller 
proportions of CD16+ monocytes and cDCs (Fig. 6e).

Establishing and validating the CD14Mono7NoISGs gene 
set for monocyte subset analysis
For the purpose of identifying the characteristic genes 
of various cell subsets, we adopted the SCTransform 
integration method in Seurat for the analysis of RNA-
seq data from six high-quality PBMCs (GSE140228, 
GSE146771, GSM3892570, GSM3892571, TenX10KV3, 
and TenXSC3V3). Subsequently, the signature gene sets 

Fig. 4 SLERRAsignature and ISG expression in mononuclear phagocytes across different clinical stages of SLE. (a) Feature plot comparing the enrichment 
of the SLERRAsignature in mononuclear phagocytes across different clinical subtypes of SLE patients. (b) Violin plot comparing the changes in SLERRA-
signature and key ISGs across mononuclear phagocyte subsets in different clinical subtypes of SLE patients
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of various immune cells were identified by FindAllMark-
ers, and the top 50 were listed (Supplementary Table 5).

Additionally, we removed the co-expressed ISGs in 
monocytes and non-monocytes (such as B cells, T cells, 
and NK cells) to create a gene set named CD14Mono-
7NoISGs. This gene set reduces the interference of 
non-monocyte-expressed ISGs to the whole blood tran-
scriptome data and can efficiently analyze the changes of 
CD14Mono7 cells in whole blood cells s or PBMCs tran-
scriptome data (Supplementary Table 5).

Two single-sample gene set enrichment analysis tools 
(AUCell and GSVA) were used to verify the signature 
gene sets of the mononuclear phagocyte subsets. In 
AUCell analysis with data from GSM4452323, the results 
indicated that the signature gene sets of CD14Mono7, 
CD16Mono, cDCs, and pDC were more abundant in 
the corresponding subsets, effectively representing each 
subset (Fig. 7a and b). The CD14Mono7NoISGs gene set 
was significantly more enriched in CD14Mono7 than in 

other subsets, suggesting it could be a representative of 
CD14Mono7 (Fig. 7b). GSVA analysis using GSE140228 
data also supported that the above signature gene sets 
effectively represented the corresponding mononuclear 
phagocyte subsets (Supplementary Fig. 3).

Correlation of CD14Mono7 signature with SLEDAI
Based on the subsets signature gene sets established 
above, we analyzed the clinical relevance of CD14Mono7 
and CD14Mono7NoISGs signatures. Firstly, the RRA 
analysis results of PBMCs from the first part datasets 
(Table 1) were extracted and analyzed by GSEA method. 
Next, the transcriptome data of whole blood cells from 
SLE patients (Supplementary Table 3) were integrated by 
RRA method for GSEA analysis. The CD14Mono7 and 
CD14Mono7NoISGs signature gene sets were signifi-
cantly enriched in the PBMCs (Fig. 8a and b) and whole 
blood cells (Fig.  8c and d) of SLE patients, suggesting a 
possible increase in the number of CD14Mono7 subset 

Fig. 5 RNA-seq analysis of peripheral blood mononuclear cells and DCs data. (a) UMAP dimensionality reduction grouping of 25,557 mononuclear 
phagocytes was performed. (b) Comparative analysis of common cell markers in a dot-plot manner. The expression of the molecules in each mononu-
clear phagocyte population was recorded. (c) Violin plot for comparative analysis of common cell marker molecules in each single expression of nuclear 
phagocyte clusters. (d) UMAP dimensionality reduction clustering plot of mononuclear phagocytes for each sample
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cells both in their PBMCs and whole blood cells. Addi-
tionally, the CD16Mono signature gene set was enriched 
in the whole blood cells of SLE patients (Fig. 8c and d), 
indicating a potential increase in CD16+ monocytes. 
The enrichment of the pDC signature gene set was sig-
nificantly downregulated in the whole blood cells of SLE 
patients (Fig. 8c and d), suggesting a possible decrease in 
pDC, which is consistent with the scRNA-seq analysis 
results of SLE mononuclear phagocytes from the previ-
ous part of the study.

We used GSE88884 data to analyze the correlation 
between the enrichment scores of the mononuclear 
phagocyte subsets signatures in the whole blood cells of 
SLE patients and clinical parameters, including the SLE-
DAI. As shown in Fig. 8e, both the enrichment scores of 
CD14Mono7 and CD14Mono7NoISGs signatures had a 
significantly positive correlation with SLEDAI, suggest-
ing that the expansion of the CD14Mono7 subset may 
be associated with high disease activity. Additionally, the 
enrichment scores of the CD14Mono7NoISGs signatures 
were negatively correlated with the levels of C3 and C4, 
and positively correlated with anti-dsDNA titers (Fig. 8e), 
further supporting the pathogenic role of this monocyte 
subset in SLE.

Elevated CD14+SIGLEC1+IRF7+ monocytes distinguish SLE 
patients from healthy controls and reflect disease activity
The correlation between CD14+SIGLEC1+IRF7+ 
monocytes enrichment and clinical indicators empha-
sizes its importance as a potential biomarker for 
SLE disease activity. Thereby, we used flow cytom-
etry to examine the proportion of CD14+SIGLEC1+ and 
CD14+SIGLEC1+IRF7+ monocytes (CD14Mono7) in the 
peripheral blood of SLE patients (n = 31) and healthy con-
trols (n = 10). The Demographic data and clinical charac-
teristics of all samples analyzed in our study are exhibited 
in Table  2. We categorized patients into two groups 
based on their SLEDAI scores: SLEDAI > 10 (n = 18) and 
SLEDAI ≤ 10 (n = 13) (the classification criteria were the 
same as the SLE scRNA-seq analysis described above).

In Fig.  9a, the flow cytometry gating strategy for the 
healthy controls and two SLE patient groups is shown, 
which identifies the CD14+CD169+ cells population. 
In Fig.  9b, on the basis of gating the CD14+ cells, the 
CD169+IRF7+ monocytes population is further defin-
ing. The results demonstrated that the proportion of 
CD14+CD169+ monocytes in SLE patients was signifi-
cantly higher compared to healthy controls (Fig.  9c). 
Within the SLE group, while no significant difference was 
observed between the two groups with different disease 
activity, both groups exhibited significant differences 

Fig. 6 SIGLEC1+IRF7+ monocytes (CD14Mono7) in peripheral blood of healthy people. (a) UMAP dimensionality reduction clustering of mononuclear 
phagocytes from samples across different groups. (b) Comparison of the composition proportions of mononuclear phagocytes in samples from different 
groups. (c) In the peripheral blood of healthy individuals, the CD14Mono7 subset shows higher expression of SIGLEC1 and IRF7 compared to other mono-
cytes. (d) In the peripheral blood of healthy individuals, the CD14Mono7 subset shows higher expression of SIGLEC1, IRF7, STAT1, and other molecules 
compared to other monocytes. (e) Mass cytometry data confirms the presence of a certain proportion of SIGLEC1+ monocytes in the peripheral blood 
of healthy individuals
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relative to healthy controls (Fig. 9d). Figure 9e shows that 
the proportion of CD14+CD169+IRF7+ monocytes in SLE 
patients was markedly elevated compared to healthy con-
trols. Intriguingly, both groups of SLE patients formed 
significant differences from healthy controls, and there 
were also significant differences between the two groups 
of patients. The more severe the disease, the higher the 
proportion of this population of cells (Fig. 9f ). Addition-
ally, we examined the proportion of CD14+CD169+IRF7+ 
monocytes within the CD14+CD169+ population (Sup-
plementary Fig.  4a), observing no significant difference 
between SLE and healthy controls or between the two 
groups of patients (p > 0.05) (Supplementary Fig. 4b and 
4c). Collectively, our flow cytometry analysis suggests 
that the elevation of CD14+CD169+IRF7+ monocytes 
may be a potential indicator for distinguishing healthy 
controls from SLE patients. Furthermore, the detection 
of CD14+CD169+IRF7+ monocytes may serve as a valu-
able tool for assessing SLE severity.

Discussion
The IFN-I pathway plays a central role in the pathogen-
esis of SLE [10, 37], by activating downstream signal-
ing pathways and transcription factors through Janus 
kinase (JAK) [4, 8] and contributing to the breakdown of 
immune tolerance, chronic inflammation, and autoim-
munity. Abnormal activation of the IFN pathway might 
result in promoting the presentation of self-antigens [38–
42], augmenting Th17 cells [43], concurrently inhibiting 
the function of Treg cells [43], and sustaining the long-
term survival of autoreactive B cells [44], thereby disrupt-
ing immune tolerance in patients with SLE.

It is widely recognized that IFN-I in peripheral blood 
is primarily produced by pDC [20, 45, 46] and has been 
shown to play a role in the pathogenesis of SLE [20]. It 
has also been shown that although the pDC is responsi-
ble for the majority of IFN-α production in the periph-
eral blood of healthy people, it accounts for only 57% of 
the IFN-α production in the peripheral blood of SLE [47]. 
Recent research indicates that certain monocytes are also 
involved in IFN-I production and are regulated by IFN-I, 
contributing to a crucial positive feedback loop of IFN-I 

Fig. 7 AUCell in the SCENIC single-cell analysis pipeline was used to verify the signature gene sets of mononuclear phagocyte subsets. (a) The enrich-
ment of signature gene sets of mononuclear phagocyte subsets in each cell population were compared and analyzed by feature map. (b) The enrichment 
of mononuclear phagocyte subsets signature gene sets in each cell population were compared and analyzed by violin plot

 



Page 13 of 19Zhang et al. Arthritis Research & Therapy           (2025) 27:96 

[8]. Furthermore, abnormalities in the number or func-
tion of monocytes have been found to promote the onset 
and progression of SLE [48, 49]. Nevertheless, these 
studies failed to provide a thorough classification of the 
pathogenic monocyte subsets and did not examine their 
biological markers. Our study aims to identify a specific 
subset of monocytes implicated in the pathogenesis of 
SLE, uncover its characteristic genetic markers, and ana-
lyze the clinical relevance of this subset of monocytes 
with the goal of providing new insights for future diagno-
sis and treatment strategies for SLE.

Our study found that key ISGs such as IFI27 and 
RSAD2 were significantly up-regulated in monocytes 
of SLE patients, forming a SLERRAsignature, which 
was significantly enriched in viral infection and IFN-I 
response pathways, and its GSVA enrichment score was 
conducive to SLE diagnosis. However, due to the lack of 
clinical data, it could not be verified by COX regression. 
In addition, the original data of GSVA analysis contained 
information on other autoimmune diseases [50], and 
the overlap of IFN characteristics affected the diagnos-
tic specificity. Although SLE is different from other dis-
eases, the high overlap suggests that multi-disease cohort 

Fig. 8 Enrichment and correlation of CD14Mono7 signature gene sets in SLE. (a) Bubble plot showing the enrichment of mononuclear phagocyte subset 
signature gene sets in monocytes of SLE patients. (b) GSEA enrichment plot of key mononuclear phagocyte subset signature gene sets in monocytes of 
SLE patients. (c) Bubble plot showing the enrichment of mononuclear phagocyte subset signature gene sets in the peripheral blood of SLE patients. (d) 
GSEA enrichment plot of key mononuclear phagocyte subset signature gene sets in the peripheral blood of SLE patients. (e) Correlation between the 
enrichment values of mononuclear phagocyte subset signature gene sets in whole blood of SLE patients and clinical indicators
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analysis is needed to clarify the specificity of IFN charac-
teristics for SLE.

IFN response can reflect disease activity and sever-
ity [51, 52]. However, some studies have indicated that 
the degree of IFN-I response is not associated with 
long-term disease activity in individual SLE patients. 
This literature suggests potential bias when using the 
expression of IFN-I signature genes in whole blood cells 
or PBMCs as lupus disease activity biomarkers [53]. To 
address this limitation, the authors propose utilizing 
IFN response indices of specific cell subsets to enhance 
clinical assessment of IFN biomarkers. In this study, we 
established an SLE monocyte signature gene set based 
on transcriptome data from PBMCs of SLE patients for 
diagnosing and evaluating SLE. Additionally, we have 
established a distinct gene set for various monocyte sub-
groups through the analysis of SLE monocyte scRNA-
seq.  In the study, we not only strived to obtain as many 
sample types and quantities as possible, but also took 
into account our requirements for high-quality scRNA-
seq data. Therefore, strict data screening was necessary. 
Ultimately, datasets encompassing cancer patients, those 
with drug-reaction with eosinophilia and systemic symp-
toms (DRESS), SLE, rheumatoid arthritis (RA) patients, 
and healthy controls were incorporated into the analysis. 
Despite potential limitations in the variety and number 
of these datasets, the high-quality nature of the samples 
ensured the reliability and robustness of the analysis out-
comes. Going forward, future research endeavors should 
prioritize the collection of a larger volume of high-qual-
ity data, expansion of the sample size, and refinement of 
data processing methodologies.

We have identified a novel subset of monocytes, 
known as SIGLEC1+IRF7+ monocytes, through analy-
sis of scRNA-seq and mass spectrometry of peripheral 
blood monocytes. Previous studies generally consider the 
expression level of SIGLEC1+ in monocytes as an indi-
cator of IFN-I activation, but do not classify SIGLEC1 
monocytes as a distinct subset with specific functional-
ity. The previous scRNA-seq analysis literature did not 
exclude the SIGLEC1+IRF7+ monocyte subset due to 
limited sample size and relatively low gene expression 
per cell [54, 55]. By augmenting the monocyte popula-
tion in scRNA-seq analysis and selectively retaining only 
those with a substantial number of expressed genes, we 
enhanced the data quality of scRNA-seq analysis, thereby 
bolstering the efficacy of cell clustering and elevating 
the precision of data analysis. The identification of the 
SIGLEC1+IRF7+ monocyte subset in healthy individuals 
through scRNA-seq analysis signifies notable progress, 
as it provides the first confirmation of its existence and 
defines its transcriptomic signature.

SIGLEC1+IRF7+ monocytes exhibit a significantly 
elevated expression of the transcription factor IRF7, 
which plays a pivotal role in regulating the expression 
level of IFN-α [56–58]. Therefore, we postulated that 
SIGLEC1+IRF7+ monocytes may be the major mono-
cyte subset that regulates the secretion of cytokines 
such as IFN-α. SIGLEC1 is a downstream target of IFN 
induction and is involved in immune complex clearance 
and antigen presentation by mononuclear cells [59]. 
In addition, the expression of SIGLEC1 can promote 
monocytes to secrete other cytokines such as IL-6 and 
TNF-α in response to IFN signals [60, 61] and regulate 
the activation ability of T cells [62]. We hypothesize that 
CD14Mono7 cells present in the peripheral blood of 
healthy individuals may play a crucial role in maintain-
ing immune homeostasis. Further research is warranted 
to elucidate their specific functions.

Several studies have utilized scRNA-seq technology 
to investigate the pathogenesis of SLE and LN, identify-
ing key immune cells and functional molecules involved 
in the disease process [21, 63, 64]. Nehar-Belaid et al. 
conducted scRNA-seq analysis of PBMCs from patients 
with SLE and observed significantly elevated expression 
levels of ISGs compared to healthy controls [21]. Further-
more, ISGs were found to be predominantly expressed 
in immune cell subsets including pDC, cDCs, CD4+ 
T cells, CD8+ T cells, NK cells, B cells, and a subset of 
monocytes. The data analyzed in our study were partly 
obtained from Nehar-Belaid et al. However, our study 
mainly analyzed monocytes and DCs, and the results of 
scRNA-seq analysis on monocytes in our study are signif-
icantly different from the conclusions of Nehar-Belaid et 
al. They suggested that a specific subset of monocytes in 
SLE patients exhibited high expression of ISGs, without 

Table 2 Demographic data and clinical characteristics of 
subjects in the study
Characteristics Patients with 

SLE (n = 31)
HCs (n = 10) P-

val-
ue

Age (Mean ± SD) (years) 32.84 ± 14.14 31.60 ± 5.52 0.70
Sex (% Female) 0.87 0.90 0.92
Height (cm) 160.23 ± 7.57 164.00 ± 5.14 0.42
Weight (kg) 55.31 ± 10.45 58.00 ± 5.80 0.33
Disease Activity (Mean 
SLEDAI ± SD)

9.68 ± 7.08 / /

SLEDAI ≤ 10 (%) 22.00 (70.97%) / /
SLEDAI > 10 (%) 9.00 (29.03%) / /
C3 (Mean ± SD) 0.71 ± 0.33 / /
C4 (Mean ± SD) 0.14 ± 0.09 / /
ANA Positive (%) 1 / /
Anti-dsDNA Antibody Posi-
tive (%)

0.55 / /

Anti-Sm Antibody Positive 
(%)

0.19 / /

Anti-Nucleosome Antibody 
Positive (%)

0.55 / /
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further categorizing the monocytes for detailed analysis. 
By selecting high-quality scRNA-seq data and incorpo-
rating new SLE monocyte scRNA-seq data, the quality of 
data analysis and the accuracy of results were enhanced. 
Our scRNA-seq analysis revealed a novel monocyte sub-
set, SIGLEC1+IRF7+ monocytes, and demonstrated that 
all monocytes, rather than only a subset, exhibited high 

expression of ISGs in SLE patients compared to healthy 
controls. This contrasts with the findings of Nehar-Belaid 
et al. Moreover, in our scRNA-seq results, we observed 
a decrement in peripheral blood pDC in SLE patients, 
which was in accordance with previous studies [65] and 
further solidified the reliability of our scRNA-seq analy-
sis. Therefore, the scRNA-seq analysis of SLE monocytes 

Fig. 9 Flow cytometry analysis of CD14+CD169+IRF7+ monocytes in SLE patients. (a) Flow cytometric gating strategies for CD14+CD169+ monocytes 
in healthy controls and two groups of SLE patients. (b) The frequency of CD14+CD169+IRF7+ cells under CD14+ gating strategy in healthy controls 
and two groups of SLE patients. (c) The frequency of CD14+CD169+/CD14+ monocytes in healthy controls (n = 10) and SLE patients (n = 31). (d) The 
frequency of CD14+CD169+/CD14+ monocytes in healthy controls and SLE patients with SLEDAI > 10 (n = 18) and SLEDAI ≤ 10 (n = 13). (e) The frequency 
of CD14+CD169+IRF7+/CD14+ monocytes in healthy controls and SLE patients. (f) The frequency of CD14+CD169+IRF7+/CD14+ monocytes in healthy 
controls and two groups of SLE patients. (ns p > 0.05, *p < 0.05, ***p < 0.001, ****p < 0.0001)

 



Page 16 of 19Zhang et al. Arthritis Research & Therapy           (2025) 27:96 

in this study further elucidates the role of monocytes and 
ISGs in the pathogenesis of SLE and offers insights into 
potential new targets for studying SLE treatment.

Furthermore, the enrichment value of the 
SIGLEC1+IRF7+ monocyte signature gene set exhibited 
a significant positive correlation with SLEDAI and anti-
dsDNA, as well as a significant negative correlation with 
complement C3 and C4. This discovery suggests that the 
presence of SIGLEC1+IRF7+ monocytes in the peripheral 
blood of SLE patients is associated with disease activity, 
and individuals with higher levels of these monocytes 
may experience more severe symptoms. It implies that 
SIGLEC1+IRF7+ monocytes could potentially play a cru-
cial role in the progression of SLE. Previous studies have 
indicated that the expression of SIGLEC1 on monocytes 
is associated with disease activity in SLE patients [66, 67], 
and it can be used to monitor the change of disease activ-
ity in SLE patients during follow-up [66, 68]. It has been 
demonstrated that the expression of SIGLEC1 in mono-
cytes of SLE patients significantly decreased following 
effective treatment [69]. The expression of IRF7 is signifi-
cantly associated with the disease activity of SLE [70, 71], 
and it participates in the pathogenesis of SLE by affecting 
the IFN pathway in monocytes of SLE [57, 72]. Combined 
with the results of our study, SIGLEC1+IRF7+ monocytes 
are expected to be a reliable and easily applicable marker 
for monitoring disease activity and predicting risk in SLE 
patients. However, our study also faces another draw-
back, which is the absence of integration between bulk 
RNA-seq data and scRNA-seq data. Integrating these 
data sets will allow us to more robustly validate our 
findings by linking batching level signals to specific cell 
types and confirming the cellular origin of key pathways 
such as the IFN signature. Future studies incorporating 
these integrations could provide deeper insights into the 
molecular mechanisms of SLE.

To fortify the credibility of the scRNA-seq analysis, 
CD14+SIGLEC1+IRF7+ monocytes were concurrently 
identified in the peripheral blood of both healthy indi-
viduals and SLE patients via flow cytometry. The pro-
portion of this particular monocyte subset is elevated 
in SLE patients and shows a concomitant increase with 
the progression of disease severity, thereby substan-
tiating the outcomes of the aforementioned scRNA-
seq analysis. In addition, both CD14+SIGLEC1+ 
monocytes and CD14+SIGLEC1+IRF7+ monocytes 
were able to distinguish SLE from healthy controls, but 
CD14+SIGLEC1+IRF7+ monocytes were more specific 
and superior to CD14+SIGLEC1+monocytes in distin-
guishing the severity of SLE. However, the limited sample 
size of our study might pose certain limitations.

Besides, our study also lacks an animal model to ver-
ify this conclusion. This is due to the extremely dif-
ficult validation in mouse models. Firstly, SIGLEC1 

is predominantly expressed on CD14+ monocytes in 
peripheral blood, but only a small proportion of normal 
monocytes express SIGLEC1, and the diminutive size 
of mice makes it challenging to detect this specific cell 
population. Additionally, SIGLEC1 and IRF7 play cru-
cial roles in the IFN-I pathway, and their deletion may 
result in decreased tolerance to viral infection and ulti-
mately lead to mortality in mice. For example, a study 
of lymphocytic choriomeningitis virus infection found 
that the production of IFN-I was reduced after SIGLEC1 
deletion, while the mice exhibited severe immunopathol-
ogy and rapidly died [73]. Therefore, further validation 
and research from various angles are necessary for the 
CD14+SIGLEC1+IRF7+ cell population, as well as their 
involvement in SLE-related mechanisms in the future.

Conclusions
Taken together, our study for the first time identified 
SIGLEC1+IRF7+ monocytes by scRNA-seq analysis and 
revealed their importance in SLE. This finding provides 
new directions for the diagnosis and treatment of SLE 
and establishes a foundation for future studies on how 
to utilize monocytes as disease markers and intervention 
targets. However, further studies are needed to verify its 
mechanism and function, which will provide more pos-
sibilities for personalized treatment of SLE.
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