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Abstract 

Osteoarthritis (OA) is a complex disorder driven by the combination of environmental and genetic factors. Given its 
high global prevalence and heterogeneity, developing effective and personalized treatment methods is crucial. This 
requires identifying new disease mechanisms, drug targets, and biomarkers. Various omics approaches have been 
applied to identify OA-related genes, pathways, and biomarkers, including genomics, epigenomics, transcriptomics, 
proteomics, and metabolomics. These omics studies have generated vast datasets that are shaping the field of OA 
research. The emergence of high-resolution methodologies, such as single-cell and spatial omics techniques, fur-
ther enhances our ability to dissect molecular complexities within the OA microenvironment. By integrating these 
multi-layered datasets, researchers can uncover central signaling hubs and disease mechanisms, ultimately facilitating 
the development of targeted therapies and precision medicine approaches for OA treatment.
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Introduction
Osteoarthritis (OA) is one of the most prevalent chronic 
diseases, affecting over 500 million people, accounting 
for approximately 7% of the world’s population [1], sub-
stantially burdening public health systems. OA is a dis-
ease of the joint as a whole organ, involving profound 
cell-cell interaction during the disease’s progress and 
symptom manifestation. Articular chondrocytes are the 
resident cells within articular cartilage that biomechani-
cally maintain a smooth and elastic surface at the end of 
bones, allowing low-friction movement. These long-lived 
and mostly postmitotic cells have both anabolic and cata-
bolic functions in remodeling the cartilage extracellular 
matrix (ECM) in a healthy state. However, upon damage 
or stress, articular chondrocytes lose proper homeostasis 

and undergo degeneration, leading to fibrosis, scarring, 
ECM loss, and mineralization, etc. The cartilage changes 
further impact the activities of osteoblast and osteoclast 
lineages in the subchondral bone, resulting in the altera-
tions of bone architecture and the growth of osteophytes, 
further aggravating OA symptoms. Synoviocytes, the lin-
ing cells of the synovium, become activated in response 
to inflammatory mediators, releasing pro-inflammatory 
cytokines and proteases that further exacerbate joint 
damage and pain in OA. In a feedforward mechanism, 
immune cells, such as macrophages and T lymphocytes, 
infiltrate the joint and produce inflammatory cytokines 
and proteases, thereby potentiating joint inflammation 
and damage. These complex OA-associated changes in 
cell properties and activities, cell-cell interaction, and 
signaling crosstalk, together with the heterogeneous 
genetic backgrounds of OA patients, baffled the devel-
opment of OA treatments. Currently, there is a lack of 
FDA-approved therapies that can modify the trajectory 
of OA progression [2]. It calls for a more comprehensive 
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understanding of OA as an organ disease associated with 
systemic molecular changes in the organism and intricate 
changes in the tissue microenvironment. Moreover, OA 
diagnosis is usually late because articular cartilage lacks 
innervation, so the initial cartilage damage is usually 
non-symptomatic; thus, the diagnosed cases are often at 
a more advanced disease stage (joint pain and stiffness), 
which is more difficult to manage clinically [3]. There-
fore, early OA diagnosis is important for managing OA 
progression, but it urgently requires the discovery of new 
and effective biomarkers. The recently developed multi-
omics approaches and downstream data integration pro-
vide an unprecedented opportunity for us to move the 
needle forward. This review highlights some selected 
recent advances in OA research that have included omics 
analyses or integrated multiple omics datasets to further 
our understanding of OA.

The advantages and limitations of omics studies
High-throughput technologies have changed science by 
enabling the investigation of highly complex molecular 
events within cells and tissues. Now, high-throughput 
omics approaches encompass a wide array of molecular 
measurement techniques that will allow an integrated 
view of the biology underlying the molecular landscape 
of OA.

Transcriptomics
Transcriptomics studies the complete set of RNA mol-
ecules produced by the genome. It provides insights into 
gene expression patterns, alternative splicing events, and 
regulatory mechanisms that control gene expression. 
Most research in OA focuses on characterizing tran-
scriptomic changes in cartilage, subchondral bone, and 
synovium, as they are directly associated with the disease 
and the most accessible samples for study. For example, 
a large transcriptome analysis involving 124 patients 
examined paired samples of low- and high-OA knee 
articular cartilage, revealing alterations in the expression 
of 38 coding RNA and 25 long non-coding RNA genes, 
alongside isoform and splicing changes [4]. Furthermore, 
transcriptomic profiling in a mouse model revealed that 
microRNA-17 (miR-17) is highly expressed in the super-
ficial and middle zones of the articular cartilage, where 
it plays a protective role against cartilage degradation 
induced by DMM (destabilization of the medial menis-
cus) surgery [5]. The study also demonstrated that growth 
differentiation factor 5 (GDF- 5) upregulated endog-
enous miR-17 expression, enhancing its protective func-
tion against OA. In addition to cartilage degradation, 
changes in the microarchitecture of subchondral bone 
are a distinct and prominent hallmark of OA. Increasing 
evidence suggests that cells within the subchondral bone 

contribute to both the onset and progression of OA [6, 
7]. An RNA-seq study found that CNTNAP2 and STMN2 
were significantly upregulated in the subchondral bone of 
OA lesions from human hips and knees [6]. Additionally, 
their analysis identified upregulation of IL11 and CHADL 
in both OA subchondral bone and cartilage. A recent 
study published in 2024 by Jiang et  al. identified tran-
scriptional alterations in genes such as MMP13, MMP1, 
MMP2, APOD, IL6, TNFAIP6, FCER1G, and IGF1 in the 
synovium of OA patients, which are implicated in regu-
lating extracellular matrix metabolism and inflammatory 
processes [8].

While transcriptomics enables understanding RNA-
level changes in OA, several limitations should be con-
sidered. The presence of RNA does not always correlate 
with protein abundance due to post-transcriptional 
regulation, including variations in translation efficiency 
and protein degradation. Notably, standard RNA-seq 
and commonly used analytical tools primarily measure 
gene expression and are not well-suited for detecting 
alternative splicing, RNA editing, or miRNA-mediated 
regulation of gene expression. Additionally, they provide 
limited insight into different RNA processing stages, such 
as unspliced precursor RNAs or intermediate transcripts, 
which can significantly impact gene function. The detec-
tion and quantification of non-coding RNAs, including 
long non-coding RNAs and transposable element-derived 
transcripts, remain challenging, particularly in repetitive 
regions where multi-mapping reads are often discarded 
or randomly assigned. Importantly, while transcriptom-
ics provides insights into gene expression, integrating 
other omics approaches, such as epigenomics, is essential 
to uncovering how the genome is regulated to permit or 
suppress these changes in gene expression.

Epigenomics
Epigenomics enables the global, unbiased identification 
of molecular modifications, such as DNA methylation, 
histone methylation or acetylation, and regulatory RNAs 
that govern chromatin accessibility and that influence 
gene expression without altering the underlying DNA 
sequence.

When DNA methyltransferases methylate DNA at the 
5’ position of cytosine within a CpG dinucleotide, this 
results in 5-methylcytosine, which is strongly associated 
with gene silencing. Numerous studies have examined 
DNA methylomes in OA using methods such as DNA 
methylation arrays, bisulfite sequencing (BS-Seq), whole 
genome bisulfite sequencing (WGBS), and reduced rep-
resentation bisulfite sequencing (RRBS). As an example, a 
study analyzing the methylation profiles of hip and knee 
OA cartilage using the Illumina Human Methylation 
450 Array identified 12 differentially methylated regions 
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(DMRs) near genes such as MEIS1, GABRG3, and RXRA 
between hip and knee OA [9]. MEIS1 is a transcription 
factor that regulates gene expression, including stem cell 
pluripotency; GABRG3 is potentially involved in pain 
perception, and RXRA is linked to bone metabolism, 
though none have been directly associated with OA. 
Additionally, a comprehensive epigenomics study utiliz-
ing multilayer genomic and epigenomics data, including 
DNA methylation, miRNA profiles, genetic variations, 
and mRNA profiles from synoviocytes of rheumatoid 
arthritis (RA) and OA patients, revealed 523 high-meth-
ylated regions specific to OA, with associations to tran-
scription factors like GLI1, RUNX2, and TFAP2 A/C 
[10]. These high-methylated regions were further linked 
to networks involved in tissue development and TGF-β 
signaling. Two similar studies have examined genome-
wide DNA methylation profiling to investigate the role 
of epigenetic modifications in subchondral bone dur-
ing OA progression. One study examined subchondral 
bone from patients with hip OA, identifying 7,316 dif-
ferentially methylated CpG sites in subchondral bone 
underlying eroded cartilage, most hypomethylated. They 
also found a strong TGF-β signaling and tumor necro-
sis factor family signature in differentially methylated 
genes [11]. Similarly, another study analyzed the DNA 
methylation profiles of subchondral bone from different 
regions of the tibial plateau from patients with knee OA, 
revealing progression-associated methylation alterations 
[12]. This study highlighted that the epigenetic changes 
occurred earlier in subchondral bone than in cartilage 
and identified shared and unique differentially methyl-
ated genes involved in tissue repair and skeletal system 
development.

Histone marks are chemical modifications (such as 
methylation, acetylation, phosphorylation, and ubiqui-
tination) on the histone proteins around which DNA is 
wrapped. These epigenetic marks not only act as molecu-
lar switches that are key regulators of chromatin struc-
ture and gene expression but also serve as docking sites 
for reader proteins. For example, histone acetylation 
(e.g., H3K9ac, H3K27ac) is associated with active tran-
scription. Acetylation reduces the positive charge on 
histones, weakening their interaction with the negatively 
charged DNA and making the chromatin more accessi-
ble to transcription factors and RNA Pol II. Bromodo-
main-containing proteins, such as BRD4 bind acetylated 
lysine and help recruit transcription elongation factors, 
including  the P-TEFb complex [13]. Histone methyla-
tion can have different effects depending on the specific 
lysine residue. For instance, H3K4me3 is typically asso-
ciated with active gene promoter and can be recognized 
by reader proteins like CHD1, which promotes elonga-
tion by facilitating chromatin remodeling, whereas H3 

K36 me3 marks the body of actively transcribed genes 
is recognized by the MORF complex and other factors, 
indicating elongation [14]. In contrast, H3K27me3 and 
H3K9me3 are recognized by reader proteins like Poly-
comb group proteins and HP1, which recruit a silencing 
complex that can repress the transcription by stabilizing 
a more compact chromatin state [15]. In OA, aberrant 
epigenetic modifications play a pivotal role in the dysreg-
ulation of gene expression, leading to disease progression.

Several studies used immunohistochemistry or west-
ern blot to identify the total changes of specific histone 
marks in the OA primary tissue instead of genome-wide 
profiling. For example, in a study examining histone 
methylation in synovial tissues, increased methylation of 
H3K79 and upregulation of DOT1L, a histone methyl-
transferase, were observed in both OA and RA patients, 
suggesting that histone methylation may play a role in 
transcriptional activation involved in these diseases [16]. 
Importantly, another study highlighted the critical role of 
Dot1l in maintaining cartilage homeostasis and protect-
ing against OA in a genetic mouse model, attributing its 
function to the inhibition of Wnt signaling [17]. In condi-
tions mimicking OA, such as Dot1 l deletion or treatment 
with the Dot1l inhibitor EPZ- 5657, the total levels of 
H3K79me2 were reduced, as confirmed by western blot 
analysis. ChIP-qPCR (chromatin immunoprecipitation 
followed by qPCR) was used to examine the enrichment 
of DOT1L and H3K79me2, revealing that SIRT1 drives 
hyperactivation of Wnt signaling when Dot1l is blocked 
in chondrocytes. However, while these approaches could 
pinpoint specific genomic loci, they did not offer a com-
prehensive and genome-wide profile of epigenetic modi-
fications. As a result, significant shifts in histone mark 
distribution across the genome can be overlooked, par-
ticularly if the total levels of these marks are minimally 
or not changed. ChIP-seq (chromatin immunoprecipita-
tion followed by sequencing) is used to identify genomic 
DNA regions that bind to specific DNA-associated pro-
teins, such as transcription factors and post-translation-
ally modified histones. However, ChIP-seq analyses on 
hard tissue pose challenges due to the requirement for a 
substantial number of cells and the difficulty of obtain-
ing them. One study used transcription factor ChIP-seq 
on primary chondrocytes, and the results suggest a cru-
cial role of FOXO1 in regulating cartilage-specific genes 
in OA chondrocytes. Epigenome profiling methods 
CUT&RUN and CUT&Tag were developed as alternative 
approaches to ChIP-seq, offering the significant advan-
tage of requiring fewer cells while providing a higher 
signal-to-noise ratio compared to ChIP-seq. For example, 
H3K9me3 CUT&RUN has been used to study skeletal 
tissue in mice, revealing how TRIM28, a crucial adap-
tor protein assembling epigenetic silencing complexes, 
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regulates skeletal stem cell fate and prevents their transi-
tion to neural crest-like cells [18]. A study that generated 
H3K27ac CUT&RUN data in primary human chondro-
cytes identified OA risk genes, including SOCS2, which 
regulate inflammation in response to cartilage matrix 
damage [19].

ATAC-seq (assay for transposase-accessible chromatin 
with sequencing) is another profiling approach to study 
chromatin accessibility. It is highly efficient and requires 
fewer cells than ChIP-seq, rendering it more applicable 
in studying hard tissues [20]. Unlike ChIP-seq, which 
targets specific histone marks or transcription factors, 
ATAC-seq offers a global survey of open chromatin 
regions, providing a broad map of the genome regulatory 
landscape. Although ATAC-seq does not directly meas-
ure transcription factor binding, one can predict the 
binding of transcription factors based on reference data-
bases by analyzing the sequence motifs within accessible 
regions. Moreover, ATAC-seq identifies active regulatory 
elements, such as enhancers and promoters, often char-
acterized by higher chromatin accessibility [21]. ATAC-
seq has been conducted to profile the overall accessible 
chromatin landscape change in comparing injured and 
intact cartilage tissue and identified strikingly distinct 
chromatin signatures, notwithstanding patient-to-patient 
differences [22]. Further analysis revealed that enhanc-
ers account for most differentially accessible regions, 
including enhancers from BMPR1b, WNT5a, and FGFR2, 
which are all known to play a role in regulating OA 
pathogenesis. Our recent ATAC-seq study revealed the 
aberrant activation of endogenous retroviruses (ERV) in 
OA or aging joints. The findings suggest that the loss of 
H3K9me3, possibly due to aging or cellular stress, leads 
to ERV reactivation that contributes to tissue inflamma-
tion and OA progression [23].

While instrumental in providing critical insights into 
gene regulation, epigenomic studies come with several 
limitations. These approaches capture only a snapshot 
of the dynamic chromatin interactions, making distin-
guishing the functional vs. non-functional regulatory ele-
ments challenging, particularly in non-coding regions. 
For example, the enhancers are highly cell-type-specific, 
and identifying functional enhancer regions requires 
additional evidence, such as transcriptional activity or 
3D chromatin interaction data. ChIP-seq, a widely used 
method for mapping protein-DNA interactions, is highly 
dependent on antibody specificity and affinity, which 
can lead to off-target binding or failure to capture the 
intended protein. DNA methylation data are largely cor-
relative and do not establish causal relationships with 
gene expression. Most studies focus on CpG methylation, 
while non-CpG methylation remains less understood and 
more challenging to detect. Similarly, ATAC-seq, which 

maps chromatin accessibility, identifies open chromatin 
regions but does not directly indicate active regulatory 
elements. To infer functional significance, downstream 
validation or integration with reference datasets is often 
required.

Proteomics
Proteins, the final products of genes, are responsible for 
the phenotypes of cells. Although proteins are translated 
from mRNA, protein levels are not always correlated 
with mRNA levels due to the delay of translation, iso-
forms, or protein half-life. Also, posttranslational modifi-
cation (PTM) and cleavage profoundly affect the function 
of proteins, but these changes cannot be detected via 
transcriptomic analysis [24]. Moreover, secreted proteins 
might be found at sites different from their synthesis so 
that solely studying the genome could overlook them.

Proteomics, first defined in 1995 as the large-scale 
characterization of a cell, tissue, biofluid, or organism’s 
entire protein complement, can resolve these issues 
[25]. Proteomics aims to study the proteome and obtain 
a more comprehensive and integrated view of biologi-
cal specimens rather than each protein individually. This 
approach enables the comparison of protein expression 
across samples, helping to identify and quantify novel or 
disease-specific proteins, also known as protein expres-
sion proteomics, and studies including the isolation of 
protein complexes and characterizing protein signaling 
or protein-drug interactions are known as functional 
proteomics [26].

The early use of proteomics was to annotate the 
genome, as the exon-intron structure of many genes can-
not be accurately predicted from genomic data alone. 
Proteomics studies helped confirm the existence of 
genes. Conversely, the expansion of proteomics has been 
driven by large-scale nucleotide sequencing of genomic 
DNA or RNA. Therefore, integrating both genomic and 
proteomic information will make it possible to elucidate 
the physiological mechanisms, such as disease, aging, and 
the effects of the environment [27].

Currently, proteomic analyses commonly utilize 
mass spectrometry (MS) techniques, including Surface 
Enhanced Laser Desorption Ionization (SELDI), Matrix-
Assisted Laser Desorption Ionization (MALDI) coupled 
with time-of-flight (TOF), and gas chromatography MS 
(GC–MS) or liquid chromatography MS (LC-MS), to 
identify proteins via mass-to-charge ratios of peptides 
[28]. The high-throughput capabilities and accuracy of 
results by MS technology have largely replaced Edman 
sequencing, which used microsequencing techniques 
in the 1990s [29]. A study utilized MS-based imaging 
to compare the distribution of peptides and proteins in 
human control and OA cartilage [30]. It identified that 
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specific protein markers, such as cartilage oligomeric 
matrix protein and fibronectin, are exclusively present in 
OA cartilage samples. Another study also compared the 
proteome profiles of healthy menisci, those with mild 
degeneration, and end-stage OA [31]. A panel of 42 pro-
teins was gradually changed in abundance from healthy 
to end-stage OA, with lower levels of QSOX1 and higher 
levels of G6PD in the mild degeneration group, suggest-
ing potential drug targets. Later, a study profiled menisci 
proteomes from OA patients (n = 10) and healthy 
controls (n = 10), allowing us to see a large difference 
between the medial menisci from OA and healthy. As 
a result, the metalloproteinase proteins, such as MMP3 
and TIMP1, showed higher abundance in the end-stage 
OA menisci, aligning with the cartilage degradation and 
inflammatory conditions.

Synovial fluid is easily accessible and may be obtained 
from OA patients through minimally invasive proce-
dures, making it well-suited for identifying protein 
biomarkers and facilitating early diagnosis and treat-
ment targets [32–35]. A study utilized the SWATH-MS 
(Sequential Window Acquisition of All Theoretical MS) 
approach to analyze the alteration of the synovial fluid 
proteome in OA. As a result, complement C1r (C1R) and 
the dickkopf-related protein 2 (DKK2) were identified as 
potential disease biomarkers or drug targets for OA in 
synovial fluid [36]. Similarly, another study analyzed the 
synovial fluid proteome to investigate the protein expres-
sion changes during different stages of knee OA [35]. 
This study compared late-stage OA (arthroplasty), early 
knee OA (arthroscopy caused due to degenerative menis-
cal tear), and individuals without knee OA as a con-
trol group. Approximately 200 differentially expressed 
proteins were identified. COL1A1 and COL3A1 were 
increased in early-stage OA but decreased or even absent 
in late-stage OA. Additionally, CRTAC1 was exclusively 
upregulated in late-stage OA, suggesting its potential as a 
marker for severe cartilage damage.

Glycoproteomics is a branch of proteomics that iden-
tifies protein glycosylation, which accounts for the most 
common post-translational protein modifications [37]. 
A recent study conducted N-glycoproteomics by com-
paring cartilage samples from OA patients without and 
with type 2 diabetes mellitus (DM-OA) [38]. This report 
identified 847 N-glycosylation sites on 374 proteins, 
among which, the upregulated glycosylated complement 
C8α alpha chain in the DM-OA group might augment 
membrane attack complex activity, exacerbating cartilage 
destruction. This research presents a comprehensive map 
of the glycosylation patterns in OA and suggests type 2 
diabetes mellitus as an independent risk factor for OA.

Moreover, studies aimed at aligning the structure 
of protein complexes and location in specific cellular 

organelles or characterizing all protein-protein inter-
actions are known as structural proteomics [26]. 
Techniques such as atomic-resolution cryo-electron 
microscopy (cryoEM) and X-ray crystallography are 
widely used to determine the structures of undiscovered 
endogenous large-sized protein complexes and extracel-
lular vesicles (EVs) [39, 40]. Nuclear Magnetic Resonance 
(NMR) is another powerful technique used for specifi-
cally determining medium-sized proteins in solution. 
These approaches can be applied to unravel the architec-
ture of protein complexes implicated in cartilage break-
down, which is crucial to OA pathology.

However, proteomics studies face several challenges. 
First, the complex and dynamic nature of the proteome, 
including protein turnover, variants, and diverse PTMs, 
complicates quantification. Also, the low-abundance but 
crucial proteins (such as transcription factors, signaling 
ligands, or rate-limiting metabolic enzymes) often fall 
below detection limits or are overshadowed by highly 
expressed proteins (such as cytoskeleton proteins and 
extracellular matrix proteins). In addition, the variability 
in sample preparation, instrument sensitivity, and data 
acquisition can increase noise and limit the reproducibil-
ity across experiments.

Metabolomics
In contrast to proteomics, metabolomics, which also 
relies on MS or NMR, is an omics approach for glob-
ally identifying metabolites in cells, tissues, biofluids, or 
entire organisms. Metabolites are small molecules that 
are the end products of the metabolic process, includ-
ing amino acids, sugars, lipids, nucleotides, and other 
organic compounds. Metabolomics provides a snapshot 
of the metabolic state of a system at a specific time. As 
metabolites are highly dynamic and can change rapidly in 
response to environmental stimuli, they are more sensi-
tive indicators of physiological states. Due to the rapid 
shifts in metabolism driven by ongoing cellular reactions, 
careful attention must be paid to minimize preparation 
artifacts that could distort the result. Metabolomics stud-
ies in OA can yield different results depending on the 
sample preparation method, such as fresh versus frozen 
samples, tissue versus primary cultured cells, flow-sorted 
vs unsorted cells, as well as the timing of processing. 
These factors can significantly influence the metabolic 
profile, making it challenging to ensure reliable and 
reproducible results [41, 42]. Despite these challenges, 
metabolomics offers unique advantages for understand-
ing disease mechanisms, and a more dynamic view of cel-
lular processes complements other omics approaches.

Altered metabolism within joint tissues has been 
previously shown to affect OA development [43]. 
Glucose metabolism has been extensively studied in 
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chondrocytes, though the role of other energy metabo-
lism pathways with different fuel/substrates, such as fatty 
acid or amino acid metabolism, has yet to be extensively 
researched [44]. Notably, glutamine metabolism was 
found to enhance the inflammatory response in chondro-
cytes [45]. A significant aspect of metabolic alterations in 
chondrocytes is mitochondrial dysfunction, which pro-
motes a metabolic shift favoring glycolysis over oxidative 
phosphorylation, disrupting homeostasis, and altering 
the balance between catabolic and anabolic activities 
[43, 46]. Mitochondrial dysfunction disrupts the electron 
transport chain (ETC), resulting in an imbalanced pro-
duction and clearance of reactive oxygen species (ROS) 
and a shift in the availability of metabolite and building 
blocks. These changes can significantly affect various 
metabolic pathways [47].

Furthermore, studies utilizing Flight-Secondary Ion 
Mass Spectrometry (TOF–SIMS) have demonstrated 
molecular-level differences in lipid distribution between 
healthy and OA cartilage. Cholesterol and some other 
fatty acids showed significant localization in OA carti-
lage, with higher concentrations near the cartilage sur-
face and calcium and phosphate ions accumulated near 
chondrocytes in OA tissue, suggesting mineral deposi-
tion in this area [48]. Metabolic profiling of biological flu-
ids has emerged as a strategy for biomarker diagnostics, 
capable of early detection, prognosis, and monitoring 
of diseases [49]. Changes in the composition of syno-
vial fluid may affect its lubricating properties, leading to 
increased wear and tear on the cartilage and inflamma-
tion. Besides harboring a variety of bioactive molecules 
including growth factors, cytokines, and enzymes, the 
synovial fluid provides metabolites to nourish chondro-
cytes, while other metabolites, including chondroitin 
sulfate degradation products, arginine and proline, nitric 
oxide, phosphatidylcholine, lysophosphatidylcholine, cer-
amides, myristate derivatives, and carnitine derivatives, 
were found to increase in OA [50]. A substantial body of 
research has also investigated changes in metabolomics 
of plasma or serum from OA patients, providing valu-
able insights into the OA-associated metabolic altera-
tions [51–55]. For example, a study investigated plasma 
metabolites and metabolic pathways in a large cohort. It 
revealed cystine as a potential metabolic biomarker of 
radiographic OA severity and early-phase synovitis [52]. 
Hence, profiling the metabolic changes of joint tissue and 
synovial fluid can potentially identify novel therapeutic 
targets and elucidate new mechanisms for OA.

Like other omics, metabolomics has its unique limi-
tations. Metabolite levels are greatly impacted by diet, 
environment, and physiology, adding variability. Sample 
collection and storage affect metabolite stability, risking 
degradation. Different analytical platforms (e.g., LC-MS, 

GC–MS, NMR) vary in sensitivity and bias, influencing 
detection. The complexity of metabolic pathways and the 
difficulty distinguishing de novo synthesis, salvage, and 
transport pathways further challenges data interpreta-
tion, requiring isotopic tracing, robust computational 
tools, and reliable reference databases.

Single‑cell and spatial omics
In contrast to the above bulk omics methods using tis-
sues, high-resolution methodologies, such as single-cell 
and spatial omics techniques, are revolutionizing our 
understanding of cell behaviors and microenvironments 
and enabling precise quantification and visualization of 
molecular complexities within tissues. They have been 
applied to OA studies at an accelerating rate.

Single‑cell
Single-cell RNA sequencing (scRNA-seq), a powerful 
technique used to analyze the gene expression of indi-
vidual cells, has revealed a hierarchy of cell lineages and 
has enabled the identification of stem cells required for 
skeletal development [18]. The use of scRNA-seq in OA 
has revealed previously unknown cellular and molecular 
characteristics through the progression of the disease, 
offering valuable insights into the development of precise 
diagnostic and therapeutic approaches tailored to the 
distinct molecular profiles observed [56–61]. A recent 
scRNA-seq study from knee OA patients compared the 
cellular composition and subpopulation-specific gene 
expression of normal and OA cartilage in 13 cell subpop-
ulations [62]. Specifically, alterations in gene expression 
showed an enrichment of the ferroptosis pathway in OA 
fibrocartilage and inflammatory chondrocyte popula-
tions. Pathological angiogenesis is coupled with aberrant 
osteogenesis, which accelerates OA in subchondral bone 
tissue. Synovial fibroblasts were associated with end-
stage OA pain when they shifted toward a more disease-
specific fibroblast pathotype in OA progression, featuring 
highly expressed HTRA3 and GPX3 [57]. In addition, a 
recent study profiled articular cartilage from healthy 
and injured mouse knee joints at single-cell resolution 
and identified nine chondrocyte subtypes with distinct 
molecular profiles [59]. The study also highlighted injury-
induced early molecular changes in these chondrocytes 
and compared the molecular similarities between mouse 
and human chondrocytes, expanding the view of chon-
drocyte heterogeneity in OA. Another study from the 
same group using scRNA-seq delineated the temporal 
dynamics of immune cell recruitment after joint trauma 
in post-traumatic osteoarthritis (PTOA) [63]. This work 
identified several immune cell types, such as monocytes 
and macrophages expanded post-injury, highlighting 
their role in joint repair.



Page 7 of 15Liu et al. Arthritis Research & Therapy          (2025) 27:100  

While scRNA-seq has transformed the understand-
ing of OA at the single-cell level, single-cell epigenetic 
data has yet to be extensively used for OA study. Sin-
gle-cell-level epigenetic sequencing methods, such as 
scATAC-seq, scMNase-seq, scChIP-seq, scBS-seq, and 
scale scMethyl, have emerged as tools for uncovering the 
epigenomic characteristics of cellular subtypes [64–67]. 
Additionally, studies used Cytometry by Time-Of-Flight 
(CyTOF), a single-cell proteomics technique, to identify 
and quantify labeled protein epitopes on the surface and 
interior of individual cells [68]. CyTOF has been used to 
identify distinct chondrocyte progenitors and inflam-
mation-modulating chondrocyte subpopulations that 
include a pro-inflammatory population marked by inter-
leukin- 1 receptor one and tumor necrosis factor receptor 
II and an anti-inflammatory population marked by CD24 
[69]. Single-cell omics approaches have enabled profil-
ing a statistically meaningful number of individual cells 
within a tissue/organism. However, single-cell profil-
ing requires generating a single-cell suspension through 
mechanical and enzymatic dissociation, which does not 
preserve the original tissue architecture. Consequently, 
developing technologies in which spatial information is 
maintained within the tissue architecture has been a logi-
cal next step in the evolution of omics technologies.

Spatial omics
Advances in spatial biology techniques now allow intact 
tissue sections to be examined using various omics 
approaches. These techniques enable mapping the spatial 
coordinates of molecular profiles and investigating cells 
within their tissue microenvironment. Using platforms 
like NanoString GeoMx, researchers can stain and image 
RNAs or proteins within whole formalin-fixed paraffin-
embedded (FFPE) or fresh frozen tissue sections, fol-
lowed by sequencing, to analyze spatial gene expression 
in cartilage. GeoMx allows for the section of regions of 
interest (ROIs), making it particularly useful for study-
ing specific histological zones in OA cartilage, such as 
the superficial layer versus the deep zone, to examine dif-
ferential gene expression related to disease progression. 
Geo-seq is a laser capture microdissection-based RNA 
sequencing technique that is used to segment different 
regions to preserve spatial information before dissocia-
tion [70]. Using Geo-seq to study knee cartilage in OA, 
researchers integrated scRNA-seq data to define the spa-
tial landscape of chondrocytes, revealing that the articu-
lar surface was the more transcriptionally active zone 
than the superficial, middle, and deep zones. Although 
the laser capture microdissection technique is power-
ful, its isolation process significantly limits through-
put. Recently, microfluidic-based barcoding methods 
have emerged for spatial transcriptomics, which can be 

categorized into two main strategies: deterministic bar-
coding, where cell positions are pre-defined, and random 
barcoding, where barcodes are assigned without prior 
knowledge of cell location. Notable examples include 
Visium/Visium HD/Xenium (10 × Genomics), HDST, 
MERFISH, DBiT-seq, Slide-seq, and Spatial Transcrip-
tomics (ST). Among these, Visium is useful for study-
ing broader tissue architecture with a resolution of 55 
µm (Visium) or 2  µm (Visium HD), making it suitable 
for exploring zonal differences in mineralized tissues 
or synovial tissue. For example, this method has been 
applied to analyze postnatal growth plate chondrocytes 
in murine hindlimbs and to map skeletal stem and pro-
genitor cells (SSPCs) in decalcified adult mouse femurs 
[71, 72]. In contrast, Slide-seq and DBiT-seq provide 
near single-cell resolution, which could be advantageous 
for characterizing heterogeneity within chondrocytes or 
synovial fibroblasts. Moreover, Xenium and MERFISH 
even offer subcellular resolutions, enabling precise locali-
zation of transcripts within individual cells. The team 
that developed ST demonstrated its efficacy by profiling 
the three-dimensional spatial transcriptomics of human 
rheumatoid arthritis synovium tissue [73].

Matrix-assisted laser desorption/ionization mass spec-
trometry imaging (MALDI-MSI) enables the generation 
of spatially resolved proteomic and metabolomic data in 
OA [74]. This method offers the advantage of identifying 
proteins and metabolites from tissues without separa-
tion and homogenization while preserving the informa-
tion on their spatial distribution. MALDI-MSI platform 
ionization imaging allows the in-situ detection of many 
peptides and proteins in OA cartilage [30]. Applied 
MALDI-MSI, proteins such as biglycan, prolargin, 
decorin, aggrecan, fibronectin, and cartilage oligomeric 
matrix protein were identified and localized. MALDI-
MSI is particularly useful for studying metabolic shifts 
in cartilage and synovium during OA progression, as it 
can provide spatially resolved insights into lipid metabo-
lism, oxidative stress markers, and glycosylation patterns, 
which are not captured by the transcriptomic approach. 
MALDI-MSI has also been used to determine the N-gly-
come in the cartilage and subchondral bone of knee OA 
in a spatially resolved manner [75].

Moreover, AtlasXomics technology has demonstrated 
the potential of spatial epigenome assays, including spa-
tial-ATAC-seq and CUT&Tag tools, which will enable 
the spatial context of epigenomic modifications within 
joint tissues. For example, spatial-ATAC-seq could be 
applied to OA cartilage to determine how chromatin 
accessibility changes across tissue zones and identify 
potential regulatory elements involved in OA progres-
sion in each of these compartments. Similarly, spatial 
CUT&Tag could reveal histone modification patterns 
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attributed to the disease state of joint cells, such as chon-
drocyte hypertrophy, senescent, inflammation, or other 
stress responses.

Future research will increasingly combine single-cell 
and spatially resolved techniques in omic studies to help 
solve the obstacle of tissue heterogeneity. This will aid in 
a comprehensive understanding of cellular interactions 
and the microenvironment in disease progression. The 
continuous development of new technologies and com-
putational methods in single-cell and spatial technolo-
gies will be instrumental in identifying novel and precise 
therapeutic strategies.

Multi‑omics in OA
The joint analysis of the genome, epigenome, transcrip-
tome, proteome, metabolome, or multi-omics transforms 
our understanding of cell biology in health and disease. 
Most omics studies in OA have focused on a single tech-
nology (Table  1). However, recent advances in multi-
omics approaches are providing a more comprehensive 
and refined view of the complex molecular mechanisms 
underlying OA.

Multi‑omics integration strategies in OA research
Multi-omics allows scientists to gain a more compre-
hensive understanding of complex biological systems by 
combining information from various omics approaches 
based on their resolution (i.e., bulk, single-cell, and spa-
tial omics) and molecules of interest (i.e., genomics, 
epigenomics, transcriptomics, proteomics, and metabo-
lomics). On the resolution level, each omics technology 
offers unique benefits by excelling in one type of reso-
lution while having limitations in others (Fig.  1). Bulk 
omics offers deep molecular profiling by analyzing the 
entire population of cells within a tissue, making it effec-
tive for identifying overall molecular trends. However, it 
lacks cellular resolution since it averages signals across 
different cell types, concealing cellular heterogeneity 
and potentially masking rare cell types or distinct cellu-
lar states. Single-cell omics excels in cellular resolution, 
revealing cellular diversity and allowing detailed study of 
individual cell types and states within tissues, but lacks 
spatial context and has limited depth of data. Spatial 
omics provide spatial resolution by mapping molecu-
lar information directly onto tissue sections, preserving 
spatial relationships between cells and tissue architec-
ture, but have limitations in molecular depth. Thus, 
multi-omics methodologies that integrate data at bulk, 
single-cell, and spatial levels are necessary to acquire 
high-resolution molecular and cellular hierarchy from 
genome to phenome in OA pathogenesis [76]. A recent 
study integrated single-cell and spatial transcriptomics 
to deconvolute the significant cellular heterogeneity in 

OA tissues and identify novel inflammatory chondrocyte 
populations as potential therapeutic targets [77]. The 
study analyzed 19 cartilage samples from 8 OA patients 
and 3 controls, profiling 135,896 chondrocytes using 
scRNA-seq (10 × Genomics) to explore cellular heteroge-
neity. In addition, spatial transcriptomics (Geo-seq) was 
performed to examine spatial heterogeneity. The scRNA-
seq and Geo-seq data were integrated to reveal zone-
specific differentially expressed genes in OA and healthy 
joints. Further integration of these results with bulk 
RNA-seq data enabled the classification of OA patients 
into two distinct subtypes. Another study identified dis-
tinct cellular populations and transcriptomes in hip syn-
ovium mediating the progression of OA by integrating 
single-cell and spatial transcriptomics using synovial tis-
sues of patients with femoroacetabular impingement and 
OA [78]. Moreover, the integration of bulk and single-cell 
RNA-seq has been used to identify 15 pyroptosis-related 
genes in human OA samples, which could be used as 
biomarkers for diagnosis and prognosis in OA [79]. Sim-
ilarly, integrated bulk and single-cell RNA-seq has identi-
fied macrophages as a diagnostic marker of early immune 
cell infiltration during synovial inflammation in OA, as 
well as several key mediators of macrophage interaction 
with other cellular populations in the OA microenviron-
ment [80].

Integration of individual omics approaches based on 
their molecules of interest also provides valuable insights 
into the pathogenesis of OA. This process identifies cor-
relations and associations between different molecular 
layers and reveals interactions that may be undetectable 
when using a single approach. For example, genes that 
contribute to OA progression, such as AQP1, COL1A1, 
and CLEC3B, were identified in a study that took an 
integrated multi-omics approach that included analysis 
of DNA CpG methylation, RNA expression, and protein 
expression data in human knee OA tissue [81]. In another 
ChIP-seq and RNA-seq-based study of primary chondro-
cytes isolated from human talar cartilage, SOCS2 expres-
sion was identified as an OA risk factor because of its 
role in the resolution of inflammation following cartilage 
matrix damage [19]. Moreover, the integration of metab-
olomics with transcriptomics in another study identified 
specific and common metabolites and genes involved in 
the progression of OA and RA [82].

However, multi-omics integration presents several 
challenges. The heterogeneity of datasets, arising from 
differences in sample preparation, experimental plat-
forms, and data processing pipelines, complicates direct 
comparisons across omics layers. Data dimensional-
ity and scale differences—such as the vast number of 
detected transcripts compared to the relatively lim-
ited number of metabolites—make integration difficult. 
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Additionally, batch effects and technical biases from dif-
ferent omics platforms can introduce noise and require 
careful normalization strategies. Another challenge is the 
lack of standardized bioinformatics tools capable of har-
monizing diverse omics data while preserving biological 
relevance. Current computational methods, such as prin-
cipal component analysis (PCA) and partial least squares 
regression (PLS), help reduce data complexity. How-
ever, integrating heterogeneous datasets still requires 
advanced algorithms and well-annotated reference data-
bases. Artificial intelligence (AI) models offer increased 
precision in predicting disease outcomes and treatment 
responses and have transformed radiology for early-
stage OA diagnosis over the last decade [83]. AI is also 
poised to revolutionize multi-omics by enhancing data 
processing and analytical capabilities. Machine learning 
and deep learning algorithms can efficiently handle vast 
amounts of data from diverse omics studies, uncover-
ing patterns and relationships that might remain hidden 
using traditional analysis. For example, linking enhancers 
and other non-coding DNA regions to target genes, iden-
tifying functional genetic variations, predicting complex 

protein structures using approaches like AlphaFold, 
identifying potential drug targets, and distinguishing cell 
morphology through spatial omics and imaging mass 
cytometry may all be enhanced by AI-assisted technol-
ogy [84].

Elucidating OA etiology by integrating GWAS and omics 
data
Another important use of multi-omics is to facilitate the 
validation and refinement of genome-wide association 
studies (GWAS)-produced candidate etiologies for dis-
eases (Fig. 2). GWAS has uncovered thousands of suscep-
tibility loci associated with complex traits and diseases 
in large cohorts [85]. To date, 633 lead single nucleotide 
polymorphisms (SNPs; P-value ≤ 5 ×  10–8) and 367 genes 
have been associated with increased OA risk, according 
to the GWAS Catalog (https:// www. ebi. ac. uk/ gwas/). 
Meta-analyses of existing data have enhanced the statisti-
cal power of GWAS studies. They validate genetic associ-
ations of diverse populations and identify genetic effects 
that may be missed in individual studies, providing 
more reliable insights into the genetic basis of OA. For 

Fig. 1 Multi-omics integration strategies in OA research. Integration of bulk, single-cell, and spatial omics technologies enables a comprehensive 
understanding of complex molecular and cellular mechanisms underlying OA pathogenesis through maximizing depth of molecular profiling 
(yellow sector), resolution of cell-cell interactions (red sector), and spatial information (blue sector)

https://www.ebi.ac.uk/gwas/
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example, a GWAS meta-analysis identified 52 sequence 
variants associated with knee or hip OA, including ten 
variants that had not previously been reported [86]. 
In addition, by meta-analyses using GWAS data from 
800,000 individuals among 13 international OA cohorts, 
the arcOGEN consortium identified 100 risk variants 
from 11 OA phenotypes [87]. However, identifying causal 
genes using GWAS remains challenging. It requires other 
biological validations, with some caveats: 1) because 
of its polygenic nature, OA arises from the interplay of 
both genetic and environmental factors, making it chal-
lenging to identify the specific genes that cause OA and 
the exact mechanisms by which they contribute to dis-
ease development; 2) Considerable heterogeneity in 
OA study populations arises from differences in disease 
severity, age, sex, ethnicity, and other factors, which can 
affect the ability to detect genetic associations; 3) While 
GWAS identified risk variants linked to OA, making a 
mechanistic connection with disease is difficult because 
most genetic changes occur in non-coding regions; and 
4) Genetic findings alone do not provide a clear under-
standing of the distinct functions of different cell types 
within affected joints. Capturing the molecular land-
scape of OA in primary joint tissue is necessary. Integrat-
ing these genetic findings with multiple levels of omics 
analysis, such as transcriptomics, epigenomics, proteom-
ics, and metabolomics of the primary tissue, represents 
a promising approach to advancing our understanding of 
the etiology of OA [4, 88–91].

Transcriptomics data have been widely integrated 
with GWAS to help prioritize genes and putative causal 
variants involved in tissues and cell types [92]. A well-
established example is the integration of genomic and 
gene expression of matching samples to identify genetic 
variants that influence expression levels of genes, termed 
expression quantitative trait loci (eQTLs) on a genome-
wide scale [93, 94]. This approach has identified genetic 
variants associated with the expression of proximal 
genes in chondrocytes and synoviocytes from OA joints 

[95]. Metabolomics integrated with disease GWAS has 
been reported to identify the genetic association with 
metabolite level, known as metabolite quantitative trait 
loci (metabQTL) [96]. A study integrated transcriptom-
ics results of 49 human tissues and metabolomics results 
of 1,391 plasma metabolites together with GWAS asso-
ciations for 2,861 diseases/traits from the GTEx project 
[97, 98]. Despite the extensive scope of the investigation, 
the specific molecular landscape of OA-relevant tis-
sues still needs to be better characterized. Methylation 
quantitative trait loci (mQTL) studies have identified 
genetic variants linked to particular CpG sites and their 
corresponding DNA methylation levels [91, 99]. A study 
combined GWAS data with ChIP-seq and RNA-seq 
datasets from human primary chondrocytes isolated via 
enzymatic digestion from human talar cartilage. A study 
utilized chromatin accessibility profiling (ATAC-seq), 
DNA methylation profiling, and RNA-seq of articular 
cartilage from OA patients to identify the dysregulation 
of regulatory elements in non-coding sequences, such as 
enhancers [90]. The enrichment of OA SNPs at enhanc-
ers suggests that the genetic variations may perturb gene 
regulation and contribute to OA susceptibility. Another 
study used chondrocyte ATAC-seq profiling to exam-
ine how nucleotide changes within evolutionarily con-
strained developmental regulatory sequences underlie 
genetic OA risk [100]. The authors proposed that the 
genetic variants in regulatory sequences associated with 
knee development and maintenance might be selected 
against due to the negative impact on fitness caused by an 
inefficient bipedal gait. Therefore, these findings suggest 
that epigenomics data, such as chromatin accessibility 
mapping, can identify loci in non-coding regions and link 
an evolutionarily novel aspect of human anatomy to OA 
pathogenesis. Moreover, a recent study published in 2024 
by Bitter et  al. generated the first whole genome chro-
mosome conformation analysis (Hi-C) map of primary 
chondrocytes from OA patients [101]. They integrated 
with the ATAC-seq mentioned above data and confirmed 

Fig. 2 The integration of GWAS studies with multi-omics enables the identification and refinement of OA etiologies and related molecular 
mechanisms. GWAS analyses revealed a spectrum of genetic factors associated with OA. Subsequent integration with selective omics approaches, 
such as transcriptomics, epigenomics, proteomics, and metabolomics, based on their relevance to the properties of candidate genes, allows 
the reduction/refinement of the candidate gene list and provides deeper molecular insight into how these etiologies influence OA progression



Page 12 of 15Liu et al. Arthritis Research & Therapy          (2025) 27:100 

the genetic variants associated with OA residing within 
enhancer-promoter chromatin loop anchors.

Beyond genetic factors, phenomics–the comprehen-
sive study of an organism’s observable traits–captures 
the complex interplay of molecular, environmental, and 
lifestyle factors contributing to OA heterogeneity (Fig. 2). 
A recent 2024 phenome-wide causal association study 
(PheWASs) by Mei et  al. identified 133 unique pheno-
typic traits with potential causal links to OA, including 
well-established risk factors such as obesity, BMI, and 
meniscus derangement, as well as novel associations with 
socioeconomic, cardiovascular, and psychiatric condi-
tions [102]. Unlike GWAS, which examines many genetic 
variants for their association with a single phenotype, 
PheWAS focuses on the impact of a single genetic variant 
across a wide range of phenotypes. Although PheWAS 
has limitations, particularly in distinguishing true plei-
otropy from confounding effects caused by linkage dis-
equilibrium (LD) [103], it could nevertheless expand our 
ability to identify new genetic variances that might not 
have been considered in the original GWAS.

These studies highlight the critical role of OA-associ-
ated genetic variants in chondrocytes, impacting gene 
transcription, metabolites, DNA methylation, and regu-
latory element activity, and the disease-causing genetic 
variants can be effectively refined by the combination of 
multi-omics.

Conclusion
The development of OA is influenced by genetics, 
aging, and environmental factors, necessitating a com-
prehensive approach to unravel its complexities. In this 
endeavor, the advent of omics technologies has ushered 
in noteworthy progress, facilitating the unbiased iden-
tification of novel biomarkers and disease mechanisms 
and the development of promising treatment strategies. 
To fully realize the potential of omics in OA research, it 
is essential to integrate various omics methodologies in 
the context of multi-omics systems biomedicine. This 
approach combines data from genomics, transcriptom-
ics, proteomics, and metabolomics, which can lead to 
a better understanding of the molecular mechanisms 
underlying OA. Moreover, due to the cellular hetero-
geneity of OA, conventional multi-omics using bulk 
tissues could not effectively elucidate the intricate sign-
aling crosstalk in the OA microenvironment; the newly 
developed/developing omics technologies that provide 
single-cell resolution and spatial information would 
enable us to achieve a comprehensive understanding of 
OA. In addition, integrating research findings derived 
from clinical samples of OA patients and relevant ani-
mal models is pivotal [104, 105]. This amalgamation 

enriches the applicability of scientific insights, bridg-
ing the gap between fundamental research and clinical 
practice. As omics technologies continue to evolve, the 
incorporation of AI holds great promise for advancing 
OA research. AI can optimize data integration, pre-
dict disease progression, and assist in identifying novel 
therapeutic targets by analyzing vast and complex data-
sets. A firm commitment to interdisciplinary research 
and the consistent use of advanced omics methodolo-
gies will undoubtedly aid in improving the understand-
ing, diagnosis, and treatment of OA.
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