Metric | ROC | ACC | PPV | NPV | SENS | SEPC | F1 |
---|
LR | 0.552 | 0.55 | 0.57 | 0.53 | 0.53 | 0.57 | 0.55 |
XGB | 0.652 | 0.66 | 0.65 | 0.67 | 0.73 | 0.57 | 0.66 |
SVM | 0.690 | 0.69 | 0.71 | 0.67 | 0.67 | 0.71 | 0.69 |
RFC | 0.755 | 0.77 | 0.72 | 0.82 | 0.87 | 0.64 | 0.75 |
- Remarks: LR Logistic Regression, XGB Extreme Gradient Boosting, SVM Support Vector Machine, RFC Random Forest Classifier, ROC receiver operator characteristic curve, ACC accuracy, PPV positive predictive value, NPV negative predictive value, SENS sensitivity, SEPC specificity